These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31556903)

  • 1. Paper-based microfluidic aluminum-air batteries: toward next-generation miniaturized power supply.
    Shen LL; Zhang GR; Biesalski M; Etzold BJM
    Lab Chip; 2019 Oct; 19(20):3438-3447. PubMed ID: 31556903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Inexpensive Paper-Based Aluminum-Air Battery.
    Avoundjian A; Galvan V; Gomez FA
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PVA/LiCl/PEO interpenetrating composite electrolyte with a three-dimensional dual-network for all-solid-state flexible aluminum-air batteries.
    Chen L; Li B; Zhu L; Deng X; Sun X; Liu Y; Zhang C; Zhao W; Chen X
    RSC Adv; 2021 Dec; 11(62):39476-39483. PubMed ID: 35492453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.
    Xu Y; Zhao Y; Ren J; Zhang Y; Peng H
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):7979-82. PubMed ID: 27193636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerophilic Co-Embedded N-Doped Carbon Nanotube Arrays as Highly Efficient Cathodes for Aluminum-Air Batteries.
    Liu S; Cao Z; Meng Y; Li Y; Yang W; Chang Z; Liu W; Sun X
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26853-26860. PubMed ID: 34060798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Fluidic batteries" as low-cost sources of power in paper-based microfluidic devices.
    Thom NK; Yeung K; Pillion MB; Phillips ST
    Lab Chip; 2012 Apr; 12(10):1768-70. PubMed ID: 22450846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Aluminum-Air Battery Based on High-Performance Three-Dimensional Dual-Network PVA/KC/KOH Composite Gel Polymer Electrolyte.
    Zou C; Chen L; Liu Q; Lu W; Sun X; Liu J; Lei Y; Zhao W; Liu Y
    Langmuir; 2024 May; 40(19):9999-10007. PubMed ID: 38696767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx.
    Zhang Q; Takeuchi KJ; Takeuchi ES; Marschilok AC
    Phys Chem Chem Phys; 2015 Sep; 17(35):22504-18. PubMed ID: 26280394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for High-Performance Rechargeable Zinc-Air Batteries.
    Sumboja A; Ge X; Goh FWT; Li B; Geng D; Hor TSA; Zong Y; Liu Z
    Chempluschem; 2015 Aug; 80(8):1341-1346. PubMed ID: 31973303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel One-Dimensional Hollow Carbon Nanotubes/Selenium Composite for High-Performance Al-Se Batteries.
    Li Z; Liu J; Huo X; Li J; Kang F
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45709-45716. PubMed ID: 31729859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward solid-state Li
    Wachsman ED; Alexander GV; Moores R; Scisco G; Tang CR; Danner M
    Faraday Discuss; 2024 Jan; 248(0):266-276. PubMed ID: 37753630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries.
    Zhang X; Wang S; Tu J; Zhang G; Li S; Tian D; Jiao S
    ChemSusChem; 2018 Feb; 11(4):709-715. PubMed ID: 29285890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-Solid-State Aluminum-Air Batteries with Ultra-high Energy Density and Uniform Aluminum Stripping Behavior.
    Lv C; Li Y; Zhu Y; Zhang Y; Kuang J; Zhao Q; Tang Y; Wang H
    Adv Sci (Weinh); 2023 Oct; 10(29):e2304214. PubMed ID: 37587016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Graphite-Graphite Dual Ion Battery Using an AlCl
    Li Z; Liu J; Niu B; Li J; Kang F
    Small; 2018 Jul; 14(28):e1800745. PubMed ID: 29882341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high power density paper-based zinc-air battery with a hollow channel structure.
    Zhang H; Zhang B; Yang Y; Ye D; Chen R; Liao Q; Zhu X
    Chem Commun (Camb); 2021 Feb; 57(10):1258-1261. PubMed ID: 33427245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rechargeable Aluminum-Ion Battery Based on MoS
    Li Z; Niu B; Liu J; Li J; Kang F
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9451-9459. PubMed ID: 29469560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.