BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31557013)

  • 1. Ligand-Binding-Site Structure Refinement Using Molecular Dynamics with Restraints Derived from Predicted Binding Site Templates.
    Guterres H; Lee HS; Im W
    J Chem Theory Comput; 2019 Nov; 15(11):6524-6535. PubMed ID: 31557013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures.
    Guterres H; Park SJ; Jiang W; Im W
    J Chem Inf Model; 2021 Jan; 61(1):535-546. PubMed ID: 33337877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The utility of geometrical and chemical restraint information extracted from predicted ligand-binding sites in protein structure refinement.
    Brylinski M; Lee SY; Zhou H; Skolnick J
    J Struct Biol; 2011 Mar; 173(3):558-69. PubMed ID: 20850544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holo Protein Conformation Generation from Apo Structures by Ligand Binding Site Refinement.
    Zhang J; Li H; Zhao X; Wu Q; Huang SY
    J Chem Inf Model; 2022 Nov; 62(22):5806-5820. PubMed ID: 36342197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHARMM-GUI-Based Induced Fit Docking Workflow to Generate Reliable Protein-Ligand Binding Modes.
    Guterres H; Im W
    J Chem Inf Model; 2023 Aug; 63(15):4772-4779. PubMed ID: 37462607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving virtual screening of G protein-coupled receptors via ligand-directed modeling.
    Coudrat T; Simms J; Christopoulos A; Wootten D; Sexton PM
    PLoS Comput Biol; 2017 Nov; 13(11):e1005819. PubMed ID: 29131821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery.
    Zhang Y; Vass M; Shi D; Abualrous E; Chambers JM; Chopra N; Higgs C; Kasavajhala K; Li H; Nandekar P; Sato H; Miller EB; Repasky MP; Jerome SV
    J Chem Inf Model; 2023 Mar; 63(6):1656-1667. PubMed ID: 36897766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement.
    Pala D; Beuming T; Sherman W; Lodola A; Rivara S; Mor M
    J Chem Inf Model; 2013 Apr; 53(4):821-35. PubMed ID: 23541165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facing the challenges of structure-based target prediction by inverse virtual screening.
    Schomburg KT; Bietz S; Briem H; Henzler AM; Urbaczek S; Rarey M
    J Chem Inf Model; 2014 Jun; 54(6):1676-86. PubMed ID: 24851945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-ligand docking against non-native protein conformers.
    Verdonk ML; Mortenson PN; Hall RJ; Hartshorn MJ; Murray CW
    J Chem Inf Model; 2008 Nov; 48(11):2214-25. PubMed ID: 18954138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures.
    Lee HS; Zhang Y
    Proteins; 2012 Jan; 80(1):93-110. PubMed ID: 21971880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are predicted protein structures of any value for binding site prediction and virtual ligand screening?
    Skolnick J; Zhou H; Gao M
    Curr Opin Struct Biol; 2013 Apr; 23(2):191-7. PubMed ID: 23415854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment.
    Loo JSE; Emtage AL; Ng KW; Yong ASJ; Doughty SW
    J Mol Graph Model; 2018 Mar; 80():38-47. PubMed ID: 29306746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials.
    Evers A; Gohlke H; Klebe G
    J Mol Biol; 2003 Nov; 334(2):327-45. PubMed ID: 14607122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.