These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31557163)

  • 1. On measuring selection in cancer from subclonal mutation frequencies.
    Bozic I; Paterson C; Waclaw B
    PLoS Comput Biol; 2019 Sep; 15(9):e1007368. PubMed ID: 31557163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Clonal and Subclonal Passenger Mutations in Cancer Evolution.
    Bozic I; Gerold JM; Nowak MA
    PLoS Comput Biol; 2016 Feb; 12(2):e1004731. PubMed ID: 26828429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation, drift and selection in single-driver hematologic malignancy: Example of secondary myelodysplastic syndrome following treatment of inherited neutropenia.
    Wojdyla T; Mehta H; Glaubach T; Bertolusso R; Iwanaszko M; Braun R; Corey SJ; Kimmel M
    PLoS Comput Biol; 2019 Jan; 15(1):e1006664. PubMed ID: 30615612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing selection in cancer using the predicted functional impact of cancer mutations. Application to nomination of cancer drivers.
    Reva B
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S8. PubMed ID: 23819556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of neutral tumor evolution across cancer types.
    Williams MJ; Werner B; Barnes CP; Graham TA; Sottoriva A
    Nat Genet; 2016 Mar; 48(3):238-244. PubMed ID: 26780609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution.
    McGranahan N; Favero F; de Bruin EC; Birkbak NJ; Szallasi Z; Swanton C
    Sci Transl Med; 2015 Apr; 7(283):283ra54. PubMed ID: 25877892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic drift, selection and the evolution of the mutation rate.
    Lynch M; Ackerman MS; Gout JF; Long H; Sung W; Thomas WK; Foster PL
    Nat Rev Genet; 2016 Oct; 17(11):704-714. PubMed ID: 27739533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tug-of-war between driver and passenger mutations in cancer and other adaptive processes.
    McFarland CD; Mirny LA; Korolev KS
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15138-43. PubMed ID: 25277973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Criticality in tumor evolution and clinical outcome.
    Persi E; Wolf YI; Leiserson MDM; Koonin EV; Ruppin E
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11101-E11110. PubMed ID: 30404913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer.
    Foo J; Liu LL; Leder K; Riester M; Iwasa Y; Lengauer C; Michor F
    PLoS Comput Biol; 2015 Sep; 11(9):e1004350. PubMed ID: 26379039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of mutational processes and selection on driver mutations across cancer types.
    Temko D; Tomlinson IPM; Severini S; Schuster-Böckler B; Graham TA
    Nat Commun; 2018 May; 9(1):1857. PubMed ID: 29748584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the Frequency of Single Point Driver Mutations across Common Solid Tumours.
    Darbyshire M; du Toit Z; Rogers MF; Gaunt TR; Campbell C
    Sci Rep; 2019 Sep; 9(1):13452. PubMed ID: 31530827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal Patterns of Selection in Cancer and Somatic Tissues.
    Martincorena I; Raine KM; Gerstung M; Dawson KJ; Haase K; Van Loo P; Davies H; Stratton MR; Campbell PJ
    Cell; 2017 Nov; 171(5):1029-1041.e21. PubMed ID: 29056346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences.
    Kumar S; Warrell J; Li S; McGillivray PD; Meyerson W; Salichos L; Harmanci A; Martinez-Fundichely A; Chan CWY; Nielsen MM; Lochovsky L; Zhang Y; Li X; Lou S; Pedersen JS; Herrmann C; Getz G; Khurana E; Gerstein MB
    Cell; 2020 Mar; 180(5):915-927.e16. PubMed ID: 32084333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ABC method for estimating the rate and distribution of effects of beneficial mutations.
    Moura de Sousa JA; Campos PR; Gordo I
    Genome Biol Evol; 2013; 5(5):794-806. PubMed ID: 23542207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purifying selection, drift, and reversible mutation with arbitrarily high mutation rates.
    Charlesworth B; Jain K
    Genetics; 2014 Dec; 198(4):1587-602. PubMed ID: 25230951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.