BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31557206)

  • 1. Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity.
    Zhang J; Ying Y; Yao X
    PLoS One; 2019; 14(9):e0222841. PubMed ID: 31557206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and chemical properties of Camellia oleifera shell composts with different additives and its maturity evaluation system.
    Zhang J; Ying Y; Li X; Yao X
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35294-35302. PubMed ID: 32592059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different additives on the chemical composition and microbial diversity during composting of Camellia oleifera shell.
    Zhang J; Zhang T; Ying Y; Yao X
    Bioresour Technol; 2021 Jun; 330():124990. PubMed ID: 33756181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in tannin and saponin components during co-composting of Camellia oleifera Abel shell and seed cake.
    Zhang J; Ying Y; Li X; Yao X
    PLoS One; 2020; 15(3):e0230602. PubMed ID: 32210466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost.
    Bryndum S; Muschler R; Nigussie A; Magid J; de Neergaard A
    Waste Manag; 2017 Jul; 65():169-177. PubMed ID: 28392123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of turning frequency on co-composting pig manure and fungus residue.
    Jiang-Ming Z
    J Air Waste Manag Assoc; 2017 Mar; 67(3):313-321. PubMed ID: 27650130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of composting parameters, technologies and maturity indexes for aerobic manure composting: A meta-analysis.
    Ji Z; Zhang L; Liu Y; Li X; Li Z
    Sci Total Environ; 2023 Aug; 886():163929. PubMed ID: 37156376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiological parameters as indicators of compost maturity.
    Tiquia SM
    J Appl Microbiol; 2005; 99(4):816-28. PubMed ID: 16162232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating aeration and rotation processes to accelerate composting of agricultural residues.
    Alkoaik FN
    PLoS One; 2019; 14(7):e0220343. PubMed ID: 31344136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-composting of faecal sludge and organic solid waste for agriculture: process dynamics.
    Cofie O; Kone D; Rothenberger S; Moser D; Zubruegg C
    Water Res; 2009 Oct; 43(18):4665-75. PubMed ID: 19660779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of morphine in opium poppy processing waste composting.
    Wang YQ; Zhang JL; Schuchardt F; Wang Y
    Bioresour Technol; 2014 Sep; 168():235-9. PubMed ID: 24613672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of sensitive seeds for evaluation of compost maturity with the seed germination index.
    Yang Y; Wang G; Li G; Ma R; Kong Y; Yuan J
    Waste Manag; 2021 Dec; 136():238-243. PubMed ID: 34700164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the Fluorescence Spectra Characteristics of Dissolved Organic Matter Derived from Organic Waste Composting Based on Projection Pursuit Classification (PPC).
    Wei ZM; Wang XL; Pan HW; Zhao Y; Xie XY; Zhao Y; Zhang LX; Zhao TZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2940-5. PubMed ID: 26904847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system.
    Qian X; Shen G; Wang Z; Guo C; Liu Y; Lei Z; Zhang Z
    Waste Manag; 2014 Feb; 34(2):530-5. PubMed ID: 24188923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions.
    Abdellah YAY; Li T; Chen X; Cheng Y; Sun S; Wang Y; Jiang C; Zang H; Li C
    Bioresour Technol; 2021 Jan; 320(Pt B):124402. PubMed ID: 33212385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N₂O emissions and nitrogen transformation during windrow composting of dairy manure.
    Chen R; Wang Y; Wang W; Wei S; Jing Z; Lin X
    J Environ Manage; 2015 Sep; 160():121-7. PubMed ID: 26100689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Composting Methods on Nitrogen Retention and Losses during Dairy Manure Composting.
    Yang X; Liu E; Zhu X; Wang H; Liu H; Liu X; Dong W
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31505898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment.
    Meng X; Liu B; Zhang H; Wu J; Yuan X; Cui Z
    Bioresour Technol; 2019 Mar; 276():281-287. PubMed ID: 30640023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure.
    Ko HJ; Kim KY; Kim HT; Kim CN; Umeda M
    Waste Manag; 2008; 28(5):813-20. PubMed ID: 17629693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite.
    Alavi N; Daneshpajou M; Shirmardi M; Goudarzi G; Neisi A; Babaei AA
    Waste Manag; 2017 Nov; 69():117-126. PubMed ID: 28780295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.