BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31557383)

  • 1. Bifunctional Small-Molecule Ligands of K-Ras Induce Its Association with Immunophilin Proteins.
    Zhang Z; Shokat KM
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16314-16319. PubMed ID: 31557383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects.
    Johnson CW; Reid D; Parker JA; Salter S; Knihtila R; Kuzmic P; Mattos C
    J Biol Chem; 2017 Aug; 292(31):12981-12993. PubMed ID: 28630043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Basis for Allosteric Inhibition of GTP-Bound H-Ras Protein by a Small-Molecule Compound Carrying a Naphthalene Ring.
    Matsumoto S; Hiraga T; Hayashi Y; Yoshikawa Y; Tsuda C; Araki M; Neya M; Shima F; Kataoka T
    Biochemistry; 2018 Sep; 57(36):5350-5358. PubMed ID: 30141910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ras-p21 bound to GDP and GTP: differences in protein and ligand dynamics.
    Mello LV; van Aalten DM; Findlay JB
    Protein Eng; 1997 Apr; 10(4):381-7. PubMed ID: 9194162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K-Ras
    Feng H; Zhang Y; Bos PH; Chambers JM; Dupont MM; Stockwell BR
    Biochemistry; 2019 May; 58(21):2542-2554. PubMed ID: 31042025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GTP-Dependent K-Ras Dimerization.
    Muratcioglu S; Chavan TS; Freed BC; Jang H; Khavrutskii L; Freed RN; Dyba MA; Stefanisko K; Tarasov SG; Gursoy A; Keskin O; Tarasova NI; Gaponenko V; Nussinov R
    Structure; 2015 Jul; 23(7):1325-35. PubMed ID: 26051715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D.
    Parker JA; Volmar AY; Pavlopoulos S; Mattos C
    Structure; 2018 Jun; 26(6):810-820.e4. PubMed ID: 29706533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras.
    Xu S; Long BN; Boris GH; Chen A; Ni S; Kennedy MA
    Acta Crystallogr D Struct Biol; 2017 Dec; 73(Pt 12):970-984. PubMed ID: 29199977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FKBP12 binds to acylated H-ras and promotes depalmitoylation.
    Ahearn IM; Tsai FD; Court H; Zhou M; Jennings BC; Ahmed M; Fehrenbacher N; Linder ME; Philips MR
    Mol Cell; 2011 Jan; 41(2):173-85. PubMed ID: 21255728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein.
    Ito Y; Yamasaki K; Iwahara J; Terada T; Kamiya A; Shirouzu M; Muto Y; Kawai G; Yokoyama S; Laue ED; Wälchli M; Shibata T; Nishimura S; Miyazawa T
    Biochemistry; 1997 Jul; 36(30):9109-19. PubMed ID: 9230043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Control of the GTP Affinity of K-Ras(G12C) by a Photoswitchable Inhibitor.
    Ge Z; Yang Z; Liang J; Dong D; Zhu M
    Chembiochem; 2019 Dec; 20(23):2916-2920. PubMed ID: 31219673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raf-1 is involved in the regulation of the interaction between guanine nucleotide exchange factor and Ha-ras. Evidences for a function of Raf-1 and phosphatidylinositol 3-kinase upstream to Ras.
    Giglione C; Parmeggiani A
    J Biol Chem; 1998 Dec; 273(52):34737-44. PubMed ID: 9856997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation.
    Winter JJ; Anderson M; Blades K; Brassington C; Breeze AL; Chresta C; Embrey K; Fairley G; Faulder P; Finlay MR; Kettle JG; Nowak T; Overman R; Patel SJ; Perkins P; Spadola L; Tart J; Tucker JA; Wrigley G
    J Med Chem; 2015 Mar; 58(5):2265-74. PubMed ID: 25695162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations.
    Grigorenko BL; Nemukhin AV; Shadrina MS; Topol IA; Burt SK
    Proteins; 2007 Feb; 66(2):456-66. PubMed ID: 17094109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency (139.5 GHz) electron paramagnetic resonance characterization of Mn(II)-H2(17)O interactions in GDP and GTP forms of p21 ras.
    Bellew BF; Halkides CJ; Gerfen GJ; Griffin RG; Singel DJ
    Biochemistry; 1996 Sep; 35(37):12186-93. PubMed ID: 8810926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the structural flexibility of the complex p21(ras)-GTP: the catalytic conformation of the molecular switch II.
    Soares TA; Miller JH; Straatsma TP
    Proteins; 2001 Dec; 45(4):297-312. PubMed ID: 11746677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells.
    Koide H; Satoh T; Nakafuku M; Kaziro Y
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8683-6. PubMed ID: 8378348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding.
    Martinez Fiesco JA; Durrant DE; Morrison DK; Zhang P
    Nat Commun; 2022 Jan; 13(1):486. PubMed ID: 35078985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different structural requirements within the switch II region of the Ras protein for interactions with specific downstream targets.
    Moodie SA; Paris M; Villafranca E; Kirshmeier P; Willumsen BM; Wolfman A
    Oncogene; 1995 Aug; 11(3):447-54. PubMed ID: 7630628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the average structures, from molecular dynamics, of complexes of GTPase activating protein (GAP) with oncogenic and wild-type ras-p21: identification of potential effector domains.
    Chen JM; Friedman FK; Brandt-Rauf PW; Pincus MR; Chie L
    J Protein Chem; 2002 Jul; 21(5):349-59. PubMed ID: 12206509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.