BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31557747)

  • 1. Green dual-template synthesis of AgPd core-shell nanoparticles with enhanced electrocatalytic activity.
    Liu H; Li L; Luo L; He Y; Cong C; He Y; Hao Z; Gao D
    Nanotechnology; 2020 Jan; 31(3):035603. PubMed ID: 31557747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of open-mouthed, yolk-shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis.
    Shi Q; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chem Sci; 2015 Jul; 6(7):4350-4357. PubMed ID: 29218206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Alcohol Oxidation through Combined Effects of Tensile Lattice Strain and Twin Defects in Core-Shell Electrocatalysts.
    Singha T; Tomar S; Chakraborty S; Das S; Satpati B
    Small; 2024 Mar; ():e2309736. PubMed ID: 38459644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodispersed silver-palladium nanoparticles for ethanol oxidation reaction achieved by controllable electrochemical synthesis from ionic liquid microemulsions.
    Sun X; Qiang Q; Yin Z; Wang Z; Ma Y; Zhao C
    J Colloid Interface Sci; 2019 Dec; 557():450-457. PubMed ID: 31539841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface quantum trap depression and charge polarization in the CuPd and AgPd bimetallic alloy catalysts.
    Sun CQ; Wang Y; Nie YG; Mehta BR; Khanuja M; Shivaprasad SM; Sun Y; Pan JS; Pan LK; Sun Z
    Phys Chem Chem Phys; 2010 Apr; 12(13):3131-5. PubMed ID: 20237700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse ordered indium-palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction.
    Chen YJ; Chen YR; Chiang CH; Tung KL; Yeh TK; Tuan HY
    Nanoscale; 2019 Feb; 11(7):3336-3343. PubMed ID: 30724949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction.
    Guo L; Chen F; Jin T; Liu H; Zhang N; Jin Y; Wang Q; Tang Q; Pan B
    Nanoscale; 2020 Feb; 12(5):3469-3481. PubMed ID: 31990278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advantageous Interfacial Effects of AgPd/g-C
    Zou W; Xu L; Pu Y; Cai H; Wei X; Luo Y; Li L; Gao B; Wan H; Dong L
    Chemistry; 2019 Apr; 25(19):5058-5064. PubMed ID: 30719734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AgPd nanoparticles for electrocatalytic CO
    Cui M; Johnson G; Zhang Z; Li S; Hwang S; Zhang X; Zhang S
    Nanoscale; 2020 Jul; 12(26):14068-14075. PubMed ID: 32582900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol Electrooxidation Catalyzed by Tungsten Core@Palladium Shell Nanoparticles.
    Yang Y; Tian M; Li Q; Min Y; Xu Q; Chen S
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30968-30976. PubMed ID: 31390184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Aqueous-Phase Synthesis of Bimetallic (AgPt, AgPd, and CuPt) and Trimetallic (AgCuPt) Nanoparticles.
    Tang Z; Jung E; Jang Y; Bhang SH; Kim J; Kim WS; Yu T
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31935999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant-Free Monodispersed Pd Nanoparticles Template for Core-Shell Pd@PdPt Nanoparticles as Electrocatalyst towards Methanol Oxidation Reaction (MOR).
    Zheng F; Kwong TL; Yung KF
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Phosphorus-Doped Ag@Pd Catalyst for Enhanced CC Bond Cleavage during Ethanol Electrooxidation.
    Yang X; Liang Z; Chen S; Ma M; Wang Q; Tong X; Zhang Q; Ye J; Gu L; Yang N
    Small; 2020 Nov; 16(47):e2004727. PubMed ID: 33136339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable application of pecan nutshell waste: Greener synthesis of Pd-based nanocatalysts for electro-oxidation of methanol.
    Hidalgo AIC; Aguirre MR; Valenzuela E; Gomez JYV; Dávila AC; Varma RS; Sánchez VHR
    Int J Hydrogen Energy; 2016; 41(48):23329-23335. PubMed ID: 32843817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable long-chains of core@shell PdAg@Pd as high-performance catalysts for ethanol oxidation.
    You H; Gao F; Song T; Zhang Y; Wang H; Liu X; Yuan M; Wang Y; Du Y
    J Colloid Interface Sci; 2020 Aug; 574():182-189. PubMed ID: 32311540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Cu@CuPt Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity.
    Wang Q; Zhao Z; Jia Y; Wang M; Qi W; Pang Y; Yi J; Zhang Y; Li Z; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36817-36827. PubMed ID: 28975789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.
    Semaltianos NG; Chassagnon R; Moutarlier V; Blondeau-Patissier V; Assoul M; Monteil G
    Nanotechnology; 2017 Apr; 28(15):155703. PubMed ID: 28303800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.