These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31557813)

  • 1. A High-Precision Method for Dynamically Measuring Train Wheel Diameter Using Three Laser Displacement Transducers.
    Zheng F; Zhang B; Gao R; Feng Q
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31557813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Service Detection and Quantification of Railway Wheel Flat by the Reflective Optical Position Sensor.
    Gao R; He Q; Feng Q; Cui J
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Railway Wheel Flat Detection System Based on a Parallelogram Mechanism.
    Gao R; He Q; Feng Q
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an On-Board Measurement System for Railway Vehicle Wheel Flange Wear.
    Turabimana P; Nkundineza C
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Measurement for the Diameter of A Train Wheel Based on Structured-Light Vision.
    Gong Z; Sun J; Zhang G
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27104543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wayside Detection of Wheel Minor Defects in High-Speed Trains by a Bayesian Blind Source Separation Method.
    Liu XZ; Xu C; Ni YQ
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of train wheel diameter based on Gaussian process regression optimized using a fast simulated annealing algorithm.
    Yu X; Su H; Fan Z; Dong Y
    PLoS One; 2019; 14(12):e0226751. PubMed ID: 31887160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual Measurement System for Wheel-Rail Lateral Position Evaluation.
    Skrickij V; Šabanovič E; Shi D; Ricci S; Rizzetto L; Bureika G
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer vision based method and system for online measurement of geometric parameters of train wheel sets.
    Zhang ZF; Gao Z; Liu YY; Jiang FC; Yang YL; Ren YF; Yang HJ; Yang K; Zhang XD
    Sensors (Basel); 2012; 12(1):334-46. PubMed ID: 22368472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new solution method for wheel/rail rolling contact.
    Yang J; Song H; Fu L; Wang M; Li W
    Springerplus; 2016; 5():471. PubMed ID: 27217986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.
    Feng L; Lin G; Zhang W; Dai D
    PLoS One; 2015; 10(2):e0118249. PubMed ID: 25723492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling wheel/rail rolling noise for a high-speed train running along an infinitely long periodic slab track.
    Sheng X; Cheng G; Thompson D
    J Acoust Soc Am; 2020 Jul; 148(1):174. PubMed ID: 32752756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a high-precision and non-contact dynamic angular displacement measurement with dual-Laser Doppler Vibrometers.
    Chen L; Zhang D; Zhou Y; Liu C; Che S
    Sci Rep; 2018 Jun; 8(1):9094. PubMed ID: 29904136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standard-wheel-based field calibration method for railway wheelset diameter online measuring system.
    Chen Y; Xing Z; Li Y; Yang Z
    Appl Opt; 2017 Apr; 56(10):2714-2723. PubMed ID: 28375233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the performance of finite element simulations on the wheel-rail interaction by using a coupling strategy.
    Ma Y; Markine VL; Mashal AA; Ren M
    Proc Inst Mech Eng F J Rail Rapid Transit; 2018 Jul; 232(6):1741-1757. PubMed ID: 30662167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Geometric Parameter Measurement of High-Speed Railway Fastener Based on Point Cloud from Structured Light Sensors.
    Cui H; Hu Q; Mao Q
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of wheel-rail interface parameters on contact stability in explicit finite element analysis.
    Ma Y; Markine VL; Mashal AA; Ren M
    Proc Inst Mech Eng F J Rail Rapid Transit; 2018 Jul; 232(6):1879-1894. PubMed ID: 30662170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Source Coupling Based Analysis of the Acoustic Radiation Characteristics of the Wheel-Rail Region of High-Speed Railways.
    Hou B; Li J; Gao L; Wang D
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Train Hunting Related Fast Degradation of a Railway Crossing-Condition Monitoring and Numerical Verification.
    Liu X; Markine VL
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of an informative railway wheel defect signal from wheel-rail contact signals measured by multiple wayside sensors.
    Alemi A; Corman F; Pang Y; Lodewijks G
    Proc Inst Mech Eng F J Rail Rapid Transit; 2019 Jan; 233(1):49-62. PubMed ID: 30662172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.