These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 31557849)
41. Comprehensive analysis of the anti-glycation effect of peanut skin extract. Zhao L; Zhu X; Yu Y; He L; Li Y; Zhang L; Liu R Food Chem; 2021 Nov; 362():130169. PubMed ID: 34102509 [TBL] [Abstract][Full Text] [Related]
42. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts. Ahmad MS; Pischetsrieder M; Ahmed N Eur J Pharmacol; 2007 Apr; 561(1-3):32-8. PubMed ID: 17321518 [TBL] [Abstract][Full Text] [Related]
43. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems. Kong Y; Li X; Zheng T; Lv L Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607 [TBL] [Abstract][Full Text] [Related]
44. Beneficial effect of Azadirachta indica on advanced glycation end-product in streptozotocin-diabetic rat. Perez Gutierrez RM; de Jesus Martinez Ortiz M Pharm Biol; 2014 Nov; 52(11):1435-44. PubMed ID: 25026338 [TBL] [Abstract][Full Text] [Related]
45. The noncovalent conjugations of bovine serum albumin with three structurally different phytosterols exerted antiglycation effects: A study with AGEs-inhibition, multispectral, and docking investigations. Sobhy R; Zhan F; Mekawi E; Khalifa I; Liang H; Li B Bioorg Chem; 2020 Jan; 94():103478. PubMed ID: 31806157 [TBL] [Abstract][Full Text] [Related]
46. Utilization of Coffee Silverskin By-Product from Coffee Roasting Industry through Extraction Process for the Development of Antioxidant Skin Gel. Kusumocahyo SP; Tangguh P; Annelies CD; Sutanto H J Cosmet Sci; 2019; 70(6):313-325. PubMed ID: 31829924 [TBL] [Abstract][Full Text] [Related]
47. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Ardestani A; Yazdanparast R Int J Biol Macromol; 2007 Dec; 41(5):572-8. PubMed ID: 17765965 [TBL] [Abstract][Full Text] [Related]
48. D-Ribose-Induced Glycation and Its Attenuation by the Aqueous Extract of Balyan P; Ola MS; Alhomida AS; Ali A Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557018 [No Abstract] [Full Text] [Related]
49. Exploring inhibitory effect and mechanism of hesperetin-Cu (II) complex against protein glycation. Peng X; Hu X; Liu K; Gong D; Zhang G Food Chem; 2023 Aug; 416():135801. PubMed ID: 36870150 [TBL] [Abstract][Full Text] [Related]
50. Protective role of Clitoria ternatea L. flower extract on methylglyoxal-induced protein glycation and oxidative damage to DNA. Chayaratanasin P; Adisakwattana S; Thilavech T BMC Complement Med Ther; 2021 Mar; 21(1):80. PubMed ID: 33648500 [TBL] [Abstract][Full Text] [Related]
51. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent. Bhattacherjee A; Dhara K; Chakraborti AS Int J Biol Macromol; 2017 Sep; 102():1274-1285. PubMed ID: 28487198 [TBL] [Abstract][Full Text] [Related]
52. Ilex paraguariensis extracts inhibit AGE formation more efficiently than green tea. Lunceford N; Gugliucci A Fitoterapia; 2005 Jul; 76(5):419-27. PubMed ID: 15894431 [TBL] [Abstract][Full Text] [Related]
53. Glycation Inhibition of Bovine Serum Albumin by Extracts of Oso B; Agboola O; Olaoye I Avicenna J Med Biotechnol; 2023; 15(3):180-187. PubMed ID: 37538235 [TBL] [Abstract][Full Text] [Related]
54. New compounds of Siolmatra brasiliensis and inhibition of in vitro protein glycation damage. Dos Santos CHC; Talpo TC; Motta BP; Kaga AK; Baviera AM; Castro RN; da Silva VC; de Sousa-Junior PT; Wessjohann L; de Carvalho MG Fitoterapia; 2019 Mar; 133():109-119. PubMed ID: 30605782 [TBL] [Abstract][Full Text] [Related]
55. Advanced glycation endproducts in food and their effects on health. Poulsen MW; Hedegaard RV; Andersen JM; de Courten B; Bügel S; Nielsen J; Skibsted LH; Dragsted LO Food Chem Toxicol; 2013 Oct; 60():10-37. PubMed ID: 23867544 [TBL] [Abstract][Full Text] [Related]
56. Evidence against the formation of 2-amino-6-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-hexanoic acid ('pyrraline') as an early-stage product or advanced glycation end product in non-enzymic protein glycation. Smith PR; Somani HH; Thornalley PJ; Benn J; Sonksen PH Clin Sci (Lond); 1993 Jan; 84(1):87-93. PubMed ID: 8382140 [TBL] [Abstract][Full Text] [Related]
57. Inhibitory effect of Piper betle Linn. leaf extract on protein glycation--quantification and characterization of the antiglycation components. Bhattacherjee A; Chakraborti AS Indian J Biochem Biophys; 2013 Dec; 50(6):529-36. PubMed ID: 24772978 [TBL] [Abstract][Full Text] [Related]
58. Identification of a novel advanced glycation end product derived from lactaldehyde. Fujimoto S; Murakami Y; Miyake H; Hayase F; Watanabe H Biosci Biotechnol Biochem; 2019 Jun; 83(6):1136-1145. PubMed ID: 30822216 [TBL] [Abstract][Full Text] [Related]
59. Antioxidant compounds of Kielmeyera coriacea Mart. with α-amylase, lipase and advanced glycation end-product inhibitory activities. Justino AB; Santana EC; Franco RR; Queiroz JS; Silva HCG; de Lima JP; Saraiva AL; Martins MM; Lemos de Morais SA; de Oliveira A; Filho LRG; Aquino FJT; Espindola FS J Pharm Biomed Anal; 2021 Nov; 206():114387. PubMed ID: 34583125 [TBL] [Abstract][Full Text] [Related]
60. The antiglycative effect of apple flowers in fructose/glucose-BSA models and cookies. Gao J; Sun Y; Li L; Zhou Q; Wang M Food Chem; 2020 Nov; 330():127170. PubMed ID: 32531633 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]