BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31558579)

  • 1. A Novel Ternary Vector System United with Morphogenic Genes Enhances CRISPR/Cas Delivery in Maize.
    Zhang Q; Zhang Y; Lu MH; Chai YP; Jiang YY; Zhou Y; Wang XC; Chen QJ
    Plant Physiol; 2019 Dec; 181(4):1441-1448. PubMed ID: 31558579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.
    Char SN; Neelakandan AK; Nahampun H; Frame B; Main M; Spalding MH; Becraft PW; Meyers BC; Walbot V; Wang K; Yang B
    Plant Biotechnol J; 2017 Feb; 15(2):257-268. PubMed ID: 27510362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems.
    Zhang Y; Zhang Q; Chen QJ
    Sci China Life Sci; 2020 Oct; 63(10):1491-1498. PubMed ID: 32279281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient CRISPR-mediated base editing in
    Rodrigues SD; Karimi M; Impens L; Van Lerberge E; Coussens G; Aesaert S; Rombaut D; Holtappels D; Ibrahim HMM; Van Montagu M; Wagemans J; Jacobs TB; De Coninck B; Pauwels L
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443212
    [No Abstract]   [Full Text] [Related]  

  • 5. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize.
    Lee K; Zhu H; Yang B; Wang K
    Methods Mol Biol; 2019; 1917():121-143. PubMed ID: 30610633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.
    Anand A; Bass SH; Wu E; Wang N; McBride KE; Annaluru N; Miller M; Hua M; Jones TJ
    Plant Mol Biol; 2018 May; 97(1-2):187-200. PubMed ID: 29687284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrobacterium-Mediated Immature Embryo Transformation of Recalcitrant Maize Inbred Lines Using Morphogenic Genes.
    Masters A; Kang M; McCaw M; Zobrist JD; Gordon-Kamm W; Jones T; Wang K
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts.
    Sant'Ana RRA; Caprestano CA; Nodari RO; Agapito-Tenfen SZ
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32887261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency.
    Vandeputte W; Coussens G; Aesaert S; Haeghebaert J; Impens L; Karimi M; Debernardi JM; Pauwels L
    Plant J; 2024 Jun; ():. PubMed ID: 38923048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z; Zhang K; Chen K; Gao C
    J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea genome editing.
    Gupta SK; Vishwakarma NK; Malakar P; Vanspati P; Sharma NK; Chattopadhyay D
    Protoplasma; 2023 Sep; 260(5):1437-1451. PubMed ID: 37131068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize (Zea mays L.).
    Frame BR; Paque T; Wang K
    Methods Mol Biol; 2006; 343():185-99. PubMed ID: 16988344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Agrobacterium transformation and vector design result in high-frequency targeted gene insertion in maize.
    Peterson D; Barone P; Lenderts B; Schwartz C; Feigenbutz L; St Clair G; Jones S; Svitashev S
    Plant Biotechnol J; 2021 Oct; 19(10):2000-2010. PubMed ID: 33934470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of maize via Agrobacterium tumefaciens using a binary co-integrate vector system.
    Zhao ZY; Ranch J
    Methods Mol Biol; 2006; 318():315-23. PubMed ID: 16673926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System.
    Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F
    J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium tumefaciens-Mediated Transformation of Rice by Hygromycin Phosphotransferase (hptII) Gene Containing CRISPR/Cas9 Vector.
    Majumder S; Datta K; Datta SK
    Methods Mol Biol; 2021; 2238():69-79. PubMed ID: 33471325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.