BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31558579)

  • 21. Maize (Zea mays L.).
    Frame B; Warnberg K; Main M; Wang K
    Methods Mol Biol; 2015; 1223():101-17. PubMed ID: 25300834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgene-Free Genome Editing in Nicotiana benthamiana with CRISPR/Cas9 Delivered by a Rhabdovirus Vector.
    Ma X; Li X; Li Z
    Methods Mol Biol; 2023; 2653():173-185. PubMed ID: 36995626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Improved
    Kang M; Lee K; Finley T; Chappell H; Veena V; Wang K
    Front Plant Sci; 2022; 13():860971. PubMed ID: 35599865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR Systems Suitable for Single AAV Vector Delivery.
    Stevanovic M; Piotter E; McClements ME; MacLaren RE
    Curr Gene Ther; 2022; 22(1):1-14. PubMed ID: 34620062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Agrobacterium-mediated maize transformation: immature embryos versus callus.
    Sidorov V; Duncan D
    Methods Mol Biol; 2009; 526():47-58. PubMed ID: 19378003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Establishment of an efficient seed fluorescence reporter-assisted CRISPR/Cas9 gene editing in maize.
    Yan Y; Zhu J; Qi X; Cheng B; Liu C; Xie C
    J Integr Plant Biol; 2021 Sep; 63(9):1671-1680. PubMed ID: 33650757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Agrobacterium strain and plasmid copy number on transformation frequency, event quality and usable event quality in an elite maize cultivar.
    Zhi L; TeRonde S; Meyer S; Arling ML; Register JC; Zhao ZY; Jones TJ; Anand A
    Plant Cell Rep; 2015 May; 34(5):745-54. PubMed ID: 25558819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system.
    Kim H; Kim ST; Ryu J; Choi MK; Kweon J; Kang BC; Ahn HM; Bae S; Kim J; Kim JS; Kim SG
    J Integr Plant Biol; 2016 Aug; 58(8):705-12. PubMed ID: 26946469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing Maize Transformation and Targeted Mutagenesis through the Assistance of Non-Integrating
    Kang M; Lee K; Ji Q; Grosic S; Wang K
    Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy.
    Wang Y; Tang Y; Zhao XM; Huang G; Gong JH; Yang SD; Li H; Wan WJ; Jia CH; Chen G; Zhang XN
    Acta Biomater; 2022 Nov; 153():481-493. PubMed ID: 36162766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coexpression of octopine and succinamopine Agrobacterium virulence genes to generate high quality transgenic events in maize by reducing vector backbone integration.
    Sardesai N; Foulk S; Chen W; Wu H; Etchison E; Gupta M
    Transgenic Res; 2018 Dec; 27(6):539-550. PubMed ID: 30293127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.
    Sivamani E; Li X; Nalapalli S; Barron Y; Prairie A; Bradley D; Doyle M; Que Q
    Transgenic Res; 2015 Dec; 24(6):1017-27. PubMed ID: 26338266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system.
    Li J; Pan W; Zhang S; Ma G; Li A; Zhang H; Liu L
    Plant J; 2024 Mar; 117(5):1604-1613. PubMed ID: 38038993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of Protoplast Isolation and Transformation for a Pilot Study of Genome Editing in Peanut by Targeting the Allergen Gene
    Biswas S; Wahl NJ; Thomson MJ; Cason JM; McCutchen BF; Septiningsih EM
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the
    Zhang S; Zhang R; Gao J; Gu T; Song G; Li W; Li D; Li Y; Li G
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice.
    Tamizi AA; Md-Yusof AA; Mohd-Zim NA; Nazaruddin NH; Sekeli R; Zainuddin Z; Samsulrizal NH
    Mol Biol Rep; 2023 Nov; 50(11):9353-9366. PubMed ID: 37819494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.