BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31558579)

  • 41. Efficient generation of adenovirus vectors carrying the Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas)12a system by suppressing Cas12a expression in packaging cells.
    Tsukamoto T; Sakai E; Nishimae F; Sakurai F; Mizuguchi H
    J Biotechnol; 2019 Oct; 304():1-9. PubMed ID: 31404563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors.
    Shalaby K; Aouida M; El-Agnaf O
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a Bicistronic Vector for the Expression of a CRISPR/Cas9-mCherry System in Fish Cell Lines.
    Escobar-Aguirre S; Arancibia D; Escorza A; Bravo C; Andrés ME; Zamorano P; Martínez V
    Cells; 2019 Jan; 8(1):. PubMed ID: 30669572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes.
    Svitashev S; Schwartz C; Lenderts B; Young JK; Mark Cigan A
    Nat Commun; 2016 Nov; 7():13274. PubMed ID: 27848933
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Intein-Mediated Split-nCas9 System for Base Editing in Plants.
    Yuan G; Lu H; De K; Hassan MM; Liu Y; Li Y; Muchero W; Abraham PE; Tuskan GA; Yang X
    ACS Synth Biol; 2022 Jul; 11(7):2513-2517. PubMed ID: 35767601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single and multiple gene knockouts by CRISPR-Cas9 in maize.
    Doll NM; Gilles LM; Gérentes MF; Richard C; Just J; Fierlej Y; Borrelli VMG; Gendrot G; Ingram GC; Rogowsky PM; Widiez T
    Plant Cell Rep; 2019 Apr; 38(4):487-501. PubMed ID: 30684023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the
    Fan Y; Lin X
    Genetics; 2018 Apr; 208(4):1357-1372. PubMed ID: 29444806
    [No Abstract]   [Full Text] [Related]  

  • 49. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application.
    Che P; Anand A; Wu E; Sander JD; Simon MK; Zhu W; Sigmund AL; Zastrow-Hayes G; Miller M; Liu D; Lawit SJ; Zhao ZY; Albertsen MC; Jones TJ
    Plant Biotechnol J; 2018 Jul; 16(7):1388-1395. PubMed ID: 29327444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system.
    Miller M; Tagliani L; Wang N; Berka B; Bidney D; Zhao ZY
    Transgenic Res; 2002 Aug; 11(4):381-96. PubMed ID: 12212841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Morphogenic Regulator-Mediated Transformation of Maize Inbred B73.
    Mookkan M; Nelson-Vasilchik K; Hague J; Kausch A; Zhang ZJ
    Curr Protoc Plant Biol; 2018 Dec; 3(4):e20075. PubMed ID: 30369097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Delivery of CRISPR/Cas9 for therapeutic genome editing.
    Xu X; Wan T; Xin H; Li D; Pan H; Wu J; Ping Y
    J Gene Med; 2019 Jul; 21(7):e3107. PubMed ID: 31237055
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9-mediated targeted T-DNA integration in rice.
    Lee K; Eggenberger AL; Banakar R; McCaw ME; Zhu H; Main M; Kang M; Gelvin SB; Wang K
    Plant Mol Biol; 2019 Mar; 99(4-5):317-328. PubMed ID: 30645710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pre-clinical non-viral vectors exploited for
    Rouatbi N; McGlynn T; Al-Jamal KT
    Biomater Sci; 2022 Jun; 10(13):3410-3432. PubMed ID: 35604372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational designs of in vivo CRISPR-Cas delivery systems.
    Xu CF; Chen GJ; Luo YL; Zhang Y; Zhao G; Lu ZD; Czarna A; Gu Z; Wang J
    Adv Drug Deliv Rev; 2021 Jan; 168():3-29. PubMed ID: 31759123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient CRISPR/Cas9-mediated genome editing in sheepgrass (Leymus chinensis).
    Lin Z; Chen L; Tang S; Zhao M; Li T; You J; You C; Li B; Zhao Q; Zhang D; Wang J; Shen Z; Song X; Zhang S; Cao X
    J Integr Plant Biol; 2023 Nov; 65(11):2416-2420. PubMed ID: 37698072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of CRISPR/Cas9-Based Gene Editing to Simultaneously Mutate Multiple Homologous Genes Required for Pollen Development and Male Fertility in Maize.
    Liu X; Zhang S; Jiang Y; Yan T; Fang C; Hou Q; Wu S; Xie K; An X; Wan X
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference.
    Sato'o Y; Hisatsune J; Yu L; Sakuma T; Yamamoto T; Sugai M
    PLoS One; 2018; 13(1):e0185987. PubMed ID: 29377933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.