These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31558920)

  • 21. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells.
    Kamei K; Guo S; Yu ZT; Takahashi H; Gschweng E; Suh C; Wang X; Tang J; McLaughlin J; Witte ON; Lee KB; Tseng HR
    Lab Chip; 2009 Feb; 9(4):555-63. PubMed ID: 19190791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term culturing of undifferentiated embryonic stem cells in conditioned media and three-dimensional fibrous matrices without extracellular matrix coating.
    Ouyang A; Ng R; Yang ST
    Stem Cells; 2007 Feb; 25(2):447-54. PubMed ID: 17023515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice.
    Freyer L; Schröter C; Saiz N; Schrode N; Nowotschin S; Martinez-Arias A; Hadjantonakis AK
    BMC Dev Biol; 2015 Oct; 15():38. PubMed ID: 26498761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells - Tools for analyzing dynamics of cell cycle, migration, and lineage selection.
    Piltti KM; Cummings BJ; Carta K; Manughian-Peter A; Worne CL; Singh K; Ong D; Maksymyuk Y; Khine M; Anderson AJ
    Methods; 2018 Jan; 133():81-90. PubMed ID: 29050826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compartmental culture of embryonic stem cell-derived neurons in microfluidic devices for use in axonal biology.
    Shin HS; Kim HJ; Min SK; Kim SH; Lee BM; Jeon NL
    Biotechnol Lett; 2010 Aug; 32(8):1063-70. PubMed ID: 20424889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device.
    Chung BG; Flanagan LA; Rhee SW; Schwartz PH; Lee AP; Monuki ES; Jeon NL
    Lab Chip; 2005 Apr; 5(4):401-6. PubMed ID: 15791337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution.
    Rohde CB; Zeng F; Gonzalez-Rubio R; Angel M; Yanik MF
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13891-5. PubMed ID: 17715055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis.
    Kasahara K; Leygeber M; Seiffarth J; Ruzaeva K; Drepper T; Nöh K; Kohlheyer D
    Front Microbiol; 2023; 14():1198170. PubMed ID: 37408642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates.
    Khoury M; Bransky A; Korin N; Konak LC; Enikolopov G; Tzchori I; Levenberg S
    Biomed Microdevices; 2010 Dec; 12(6):1001-8. PubMed ID: 20665114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time microfluidic system for studying mammalian cells in 3D microenvironments.
    Lii J; Hsu WJ; Parsa H; Das A; Rouse R; Sia SK
    Anal Chem; 2008 May; 80(10):3640-7. PubMed ID: 18393530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembly and Use of a Microfluidic Device to Study Cell Migration in Confined Environments.
    Keys J; Windsor A; Lammerding J
    Methods Mol Biol; 2018; 1840():101-118. PubMed ID: 30141042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells.
    McKee C; Perez-Cruet M; Chavez F; Chaudhry GR
    World J Stem Cells; 2015 Aug; 7(7):1064-77. PubMed ID: 26328022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings.
    Blanchoud S; Nicolas D; Zoller B; Tidin O; Naef F
    Methods; 2015 Sep; 85():3-11. PubMed ID: 25934263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable Microfluidic Platform for Flexible Configuration of and Experiments with Microtissue Multiorgan Models.
    Lohasz C; Rousset N; Renggli K; Hierlemann A; Frey O
    SLAS Technol; 2019 Feb; 24(1):79-95. PubMed ID: 30289726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A self-contained microfluidic cell culture system.
    Zhang B; Kim MC; Thorsen T; Wang Z
    Biomed Microdevices; 2009 Dec; 11(6):1233-7. PubMed ID: 19629698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic platform for correlative live-cell and super-resolution microscopy.
    Tam J; Cordier GA; Bálint Š; Sandoval Álvarez Á; Borbely JS; Lakadamyali M
    PLoS One; 2014; 9(12):e115512. PubMed ID: 25545548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Versatile on-stage microfluidic system for long term cell culture, micromanipulation and time lapse assays.
    Huang YX; He CL; Wang P; Pan YT; Tuo WW; Yao CC
    Biosens Bioelectron; 2018 Mar; 101():66-74. PubMed ID: 29040916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cultivation and Imaging of
    Clerc T; Boscq S; Attia R; Kaminski Schierle GS; Charrier B; Läubli NF
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.