These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 31559004)
1. Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients. Li C; Jia T; Xu Q; Ji L; Pan Y J Healthc Eng; 2019; 2019():3817124. PubMed ID: 31559004 [TBL] [Abstract][Full Text] [Related]
2. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm. Takahashi K; Kato K; Mizuguchi N; Ushiba J J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845 [TBL] [Abstract][Full Text] [Related]
3. Denoising Algorithm for Event-Related Desynchronization-Based Motor Intention Recognition in Robot-assisted Stroke Rehabilitation Training with Brain-Machine Interaction. Jia T; Liu K; Qian C; Li C; Ji L J Neurosci Methods; 2020 Dec; 346():108909. PubMed ID: 32810473 [TBL] [Abstract][Full Text] [Related]
4. Longitudinal Analysis of Stroke Patients' Brain Rhythms during an Intervention with a Brain-Computer Interface. Carino-Escobar RI; Carrillo-Mora P; Valdés-Cristerna R; Rodriguez-Barragan MA; Hernandez-Arenas C; Quinzaños-Fresnedo J; Galicia-Alvarado MA; Cantillo-Negrete J Neural Plast; 2019; 2019():7084618. PubMed ID: 31110515 [TBL] [Abstract][Full Text] [Related]
5. Motor imagery EEG classification based on ensemble support vector learning. Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387 [TBL] [Abstract][Full Text] [Related]
6. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866 [TBL] [Abstract][Full Text] [Related]
7. EEG response varies with lesion location in patients with chronic stroke. Park W; Kwon GH; Kim YH; Lee JH; Kim L J Neuroeng Rehabil; 2016 Mar; 13():21. PubMed ID: 26935230 [TBL] [Abstract][Full Text] [Related]
8. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
9. A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training. Liu Y; Zhang H; Chen M; Zhang L IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):169-79. PubMed ID: 26302519 [TBL] [Abstract][Full Text] [Related]
10. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. Hasegawa K; Kasuga S; Takasaki K; Mizuno K; Liu M; Ushiba J J Neuroeng Rehabil; 2017 Aug; 14(1):85. PubMed ID: 28841920 [TBL] [Abstract][Full Text] [Related]
11. A new therapeutic application of brain-machine interface (BMI) training followed by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy for patients with severe hemiparetic stroke: A proof of concept study. Kawakami M; Fujiwara T; Ushiba J; Nishimoto A; Abe K; Honaga K; Nishimura A; Mizuno K; Kodama M; Masakado Y; Liu M Restor Neurol Neurosci; 2016 Sep; 34(5):789-97. PubMed ID: 27589505 [TBL] [Abstract][Full Text] [Related]
12. Movement-Related EEG Oscillations of Contralesional Hemisphere Discloses Compensation Mechanisms of Severely Affected Motor Chronic Stroke Patients. Barios JA; Ezquerro S; Bertomeu-Motos A; Catalan JM; Sanchez-Aparicio JM; Donis-Barber L; Fernandez E; Garcia-Aracil N Int J Neural Syst; 2021 Dec; 31(12):2150053. PubMed ID: 34719347 [TBL] [Abstract][Full Text] [Related]
13. Event-related desynchronization during movement attempt and execution in severely paralyzed stroke patients: An artifact removal relevance analysis. López-Larraz E; Figueiredo TC; Insausti-Delgado A; Ziemann U; Birbaumer N; Ramos-Murguialday A Neuroimage Clin; 2018; 20():972-986. PubMed ID: 30312940 [TBL] [Abstract][Full Text] [Related]
14. A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training. Liu Y; Li M; Zhang H; Wang H; Li J; Jia J; Wu Y; Zhang L J Neurosci Methods; 2014 Jan; 222():238-49. PubMed ID: 24280103 [TBL] [Abstract][Full Text] [Related]
15. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces. Vuckovic A; Pangaro S; Finda P IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375 [TBL] [Abstract][Full Text] [Related]
16. Preparatory movement state enhances premovement EEG representations for brain-computer interfaces. Zhang Y; Li M; Wang H; Zhang M; Xu G J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38806037 [No Abstract] [Full Text] [Related]
17. An Adaptive Hybrid Brain-Computer Interface for Hand Function Rehabilitation of Stroke Patients. Su J; Wang J; Wang W; Wang Y; Bunterngchit C; Zhang P; Hou ZG IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2950-2960. PubMed ID: 39028609 [TBL] [Abstract][Full Text] [Related]
18. Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm. Kato K; Takahashi K; Mizuguchi N; Ushiba J J Neurosci Methods; 2018 Jan; 293():289-298. PubMed ID: 29055718 [TBL] [Abstract][Full Text] [Related]
19. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality. Varsehi H; Firoozabadi SMP Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643 [TBL] [Abstract][Full Text] [Related]
20. Brain oscillatory signatures of motor tasks. Ramos-Murguialday A; Birbaumer N J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]