These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31559527)

  • 21. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map.
    Karikari B; Li S; Bhat JA; Cao Y; Kong J; Yang J; Gai J; Zhao T
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.).
    Hake AA; Shirasawa K; Yadawad A; Sukruth M; Patil M; Nayak SN; Lingaraju S; Patil PV; Nadaf HL; Gowda MVC; Bhat RS
    PLoS One; 2017; 12(10):e0186113. PubMed ID: 29040293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut.
    Yang Y; Li Y; Cheng Z; Su Q; Jin X; Song Y; Wang J
    Theor Appl Genet; 2023 Apr; 136(5):97. PubMed ID: 37027047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.).
    Chen W; Jiao Y; Cheng L; Huang L; Liao B; Tang M; Ren X; Zhou X; Chen Y; Jiang H
    BMC Genet; 2016 Jan; 17():25. PubMed ID: 26810040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-localization of quantitative trait loci for pod and kernel traits and development of molecular marker for kernel weight on chromosome Arahy05 in peanut (Arachis hypogaea L.).
    Fang Y; Liu H; Sun Z; Qin L; Zheng Z; Qi F; Wu J; Dong W; Huang B; Zhang X
    Theor Appl Genet; 2024 Oct; 137(11):250. PubMed ID: 39384636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut.
    Pandey MK; Gangurde SS; Sharma V; Pattanashetti SK; Naidu GK; Faye I; Hamidou F; Desmae H; Kane NA; Yuan M; Vadez V; Nigam SN; Varshney RK
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP(TM) '113'.
    Tseng YC; Tillman BL; Peng Z; Wang J
    BMC Genet; 2016 Sep; 17(1):128. PubMed ID: 27600750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut germplasm.
    Zhao Z; Tseng YC; Peng Z; Lopez Y; Chen CY; Tillman BL; Dang P; Wang J
    BMC Genet; 2018 Mar; 19(1):17. PubMed ID: 29571286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea).
    Khan SA; Chen H; Deng Y; Chen Y; Zhang C; Cai T; Ali N; Mamadou G; Xie D; Guo B; Varshney RK; Zhuang W
    Theor Appl Genet; 2020 Jul; 133(7):2239-2257. PubMed ID: 32285164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing.
    Liu H; Sun Z; Zhang X; Qin L; Qi F; Wang Z; Du P; Xu J; Zhang Z; Han S; Li S; Gao M; Zhang L; Cheng Y; Zheng Z; Huang B; Dong W
    BMC Plant Biol; 2020 Jun; 20(1):249. PubMed ID: 32493219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt.
    Qi F; Sun Z; Liu H; Zheng Z; Qin L; Shi L; Chen Q; Liu H; Lin X; Miao L; Tian M; Wang X; Huang B; Dong W; Zhang X
    Theor Appl Genet; 2022 Apr; 135(4):1319-1330. PubMed ID: 35059781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max.
    Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J
    BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.).
    Luo H; Xu Z; Li Z; Li X; Lv J; Ren X; Huang L; Zhou X; Chen Y; Yu J; Chen W; Lei Y; Liao B; Jiang H
    Theor Appl Genet; 2017 Aug; 130(8):1635-1648. PubMed ID: 28508097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.).
    Ravi K; Vadez V; Isobe S; Mir RR; Guo Y; Nigam SN; Gowda MV; Radhakrishnan T; Bertioli DJ; Knapp SJ; Varshney RK
    Theor Appl Genet; 2011 Apr; 122(6):1119-32. PubMed ID: 21191568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing.
    Han J; Han D; Guo Y; Yan H; Wei Z; Tian Y; Qiu L
    Theor Appl Genet; 2019 Aug; 132(8):2253-2272. PubMed ID: 31161230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Density Genetic Map Construction and Quantitative Trait Locus Analysis of Fruit- and Oil-Related Traits in
    Lin P; Chai J; Wang A; Zhong H; Wang K
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201527
    [No Abstract]   [Full Text] [Related]  

  • 37. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea).
    Luo Z; Cui R; Chavarro C; Tseng YC; Zhou H; Peng Z; Chu Y; Yang X; Lopez Y; Tillman B; Dufault N; Brenneman T; Isleib TG; Holbrook C; Ozias-Akins P; Wang J
    Theor Appl Genet; 2020 Apr; 133(4):1201-1212. PubMed ID: 31974667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of two major QTLs for pod shell thickness in peanut (Arachis hypogaea L.) using BSA-seq analysis.
    Liu H; Zheng Z; Sun Z; Qi F; Wang J; Wang M; Dong W; Cui K; Zhao M; Wang X; Zhang M; Wu X; Wu Y; Luo D; Huang B; Zhang Z; Cao G; Zhang X
    BMC Genomics; 2024 Jan; 25(1):65. PubMed ID: 38229017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide association study and development of molecular markers for yield and quality traits in peanut (Arachis hypogaea L.).
    Guo M; Deng L; Gu J; Miao J; Yin J; Li Y; Fang Y; Huang B; Sun Z; Qi F; Dong W; Lu Z; Li S; Hu J; Zhang X; Ren L
    BMC Plant Biol; 2024 Apr; 24(1):244. PubMed ID: 38575936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.).
    Khedikar YP; Gowda MV; Sarvamangala C; Patgar KV; Upadhyaya HD; Varshney RK
    Theor Appl Genet; 2010 Sep; 121(5):971-84. PubMed ID: 20526757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.