These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 31559682)
1. The impact of grape processing and carbonic maceration on the microbiota of early stages of winemaking. Guzzon R; Malacarne M; Larcher R; Franciosi E; Toffanin A J Appl Microbiol; 2020 Jan; 128(1):209-224. PubMed ID: 31559682 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of grape ripeness, carbonic maceration and pectolytic enzymes to improve the chemical and sensory quality of red sparkling wines. González-Lázaro M; Martínez-Lapuente L; Guadalupe Z; Ayestaran B; Bueno-Herrera M; López de la Cuesta P; Pérez-Magariño S J Sci Food Agric; 2020 Apr; 100(6):2618-2629. PubMed ID: 31975420 [TBL] [Abstract][Full Text] [Related]
3. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space. Marzano M; Fosso B; Manzari C; Grieco F; Intranuovo M; Cozzi G; Mulè G; Scioscia G; Valiente G; Tullo A; Sbisà E; Pesole G; Santamaria M PLoS One; 2016; 11(6):e0157383. PubMed ID: 27299312 [TBL] [Abstract][Full Text] [Related]
4. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
5. Application of ozone during grape drying for the production of straw wine. Effects on the microbiota and compositive profile of grapes. Guzzon R; Franciosi E; Moser S; Carafa I; Larcher R J Appl Microbiol; 2018 Aug; 125(2):513-527. PubMed ID: 29624801 [TBL] [Abstract][Full Text] [Related]
6. Effects of different oenological techniques on the elaboration of adequate base wines for red sparkling wine production: phenolic composition, sensory properties and foam parameters. González-Lázaro M; Martínez-Lapuente L; Palacios A; Guadalupe Z; Ayestarán B; Bueno-Herrera M; de la Cuesta PL; Pérez-Magariño S J Sci Food Agric; 2019 Aug; 99(10):4580-4592. PubMed ID: 30891763 [TBL] [Abstract][Full Text] [Related]
7. Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. Francesca N; Romano R; Sannino C; Le Grottaglie L; Settanni L; Moschetti G Int J Food Microbiol; 2014 Feb; 171():84-93. PubMed ID: 24334093 [TBL] [Abstract][Full Text] [Related]
8. The role of processing on ochratoxin A content in Italian must and wine: a study on naturally contaminated grapes. Grazioli B; Fumi MD; Silva A Int J Food Microbiol; 2006 Sep; 111 Suppl 1():S93-6. PubMed ID: 16714068 [TBL] [Abstract][Full Text] [Related]
9. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. Bokulich NA; Collins TS; Masarweh C; Allen G; Heymann H; Ebeler SE; Mills DA mBio; 2016 Jun; 7(3):. PubMed ID: 27302757 [TBL] [Abstract][Full Text] [Related]
11. Monitoring Seasonal Changes in Winery-Resident Microbiota. Bokulich NA; Ohta M; Richardson PM; Mills DA PLoS One; 2013; 8(6):e66437. PubMed ID: 23840468 [TBL] [Abstract][Full Text] [Related]
12. Timing of malolactic fermentation inoculation in Shiraz grape must and wine: influence on chemical composition. Abrahamse CE; Bartowsky EJ World J Microbiol Biotechnol; 2012 Jan; 28(1):255-65. PubMed ID: 22806801 [TBL] [Abstract][Full Text] [Related]
13. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing. Carew AL; Close DC; Dambergs RG J Appl Microbiol; 2015 Jun; 118(6):1385-94. PubMed ID: 25728037 [TBL] [Abstract][Full Text] [Related]
14. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Mar; 154(3):152-61. PubMed ID: 22277696 [TBL] [Abstract][Full Text] [Related]
15. Effect of the natural winemaking process applied at industrial level on the microbiological and chemical characteristics of wine. Sannino C; Francesca N; Corona O; Settanni L; Cruciata M; Moschetti G J Biosci Bioeng; 2013 Sep; 116(3):347-56. PubMed ID: 23611824 [TBL] [Abstract][Full Text] [Related]
16. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. Renouf V; Falcou M; Miot-Sertier C; Perello MC; De Revel G; Lonvaud-Funel A J Appl Microbiol; 2006 Jun; 100(6):1208-19. PubMed ID: 16696668 [TBL] [Abstract][Full Text] [Related]
17. Microbial diversity and chemical analysis of the starters used in traditional Chinese sweet rice wine. Cai H; Zhang T; Zhang Q; Luo J; Cai C; Mao J Food Microbiol; 2018 Aug; 73():319-326. PubMed ID: 29526219 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the oenological suitability of grapes grown using biodynamic agriculture: the case of a bad vintage. Guzzon R; Gugole S; Zanzotti R; Malacarne M; Larcher R; von Wallbrunn C; Mescalchin E J Appl Microbiol; 2016 Feb; 120(2):355-65. PubMed ID: 26600207 [TBL] [Abstract][Full Text] [Related]
19. Influence of an indigenous yeast, CECA, from the Ningxia wine region of China, on the fungal and bacterial dynamics and function during Cabernet Sauvignon wine fermentation. Zhang F; Zhang J; Sun Y J Sci Food Agric; 2024 Nov; 104(14):8693-8706. PubMed ID: 38922891 [TBL] [Abstract][Full Text] [Related]
20. Yeast diversity during the spontaneous fermentation of wine with only the microbiota on grapes cultivated in Japan. Shimizu H; Kamada A; Koyama K; Iwashita K; Goto-Yamamoto N J Biosci Bioeng; 2023 Jul; 136(1):35-43. PubMed ID: 37088673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]