BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 31559706)

  • 1. The novel BET-CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild-type prostate cancer.
    Yan Y; Ma J; Wang D; Lin D; Pang X; Wang S; Zhao Y; Shi L; Xue H; Pan Y; Zhang J; Wahlestedt C; Giles FJ; Chen Y; Gleave ME; Collins CC; Ye D; Wang Y; Huang H
    EMBO Mol Med; 2019 Nov; 11(11):e10659. PubMed ID: 31559706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation.
    Zhang P; Wang D; Zhao Y; Ren S; Gao K; Ye Z; Wang S; Pan CW; Zhu Y; Yan Y; Yang Y; Wu D; He Y; Zhang J; Lu D; Liu X; Yu L; Zhao S; Li Y; Lin D; Wang Y; Wang L; Chen Y; Sun Y; Wang C; Huang H
    Nat Med; 2017 Sep; 23(9):1055-1062. PubMed ID: 28805822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4.
    Dai X; Gan W; Li X; Wang S; Zhang W; Huang L; Liu S; Zhong Q; Guo J; Zhang J; Chen T; Shimizu K; Beca F; Blattner M; Vasudevan D; Buckley DL; Qi J; Buser L; Liu P; Inuzuka H; Beck AH; Wang L; Wild PJ; Garraway LA; Rubin MA; Barbieri CE; Wong KK; Muthuswamy SK; Huang J; Chen Y; Bradner JE; Wei W
    Nat Med; 2017 Sep; 23(9):1063-1071. PubMed ID: 28805820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Targeting of the BRD4-NUT-p300 Axis in NUT Midline Carcinoma by Dual Selective Bromodomain Inhibitor, NEO2734.
    Morrison-Smith CD; Knox TM; Filic I; Soroko KM; Eschle BK; Wilkens MK; Gokhale PC; Giles F; Griffin A; Brown B; Shapiro GI; Zucconi BE; Cole PA; Lemieux ME; French CA
    Mol Cancer Ther; 2020 Jul; 19(7):1406-1414. PubMed ID: 32371576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors.
    Janouskova H; El Tekle G; Bellini E; Udeshi ND; Rinaldi A; Ulbricht A; Bernasocchi T; Civenni G; Losa M; Svinkina T; Bielski CM; Kryukov GV; Cascione L; Napoli S; Enchev RI; Mutch DG; Carney ME; Berchuck A; Winterhoff BJN; Broaddus RR; Schraml P; Moch H; Bertoni F; Catapano CV; Peter M; Carr SA; Garraway LA; Wild PJ; Theurillat JP
    Nat Med; 2017 Sep; 23(9):1046-1054. PubMed ID: 28805821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer.
    Choo N; Keerthikumar S; Ramm S; Ashikari D; Teng L; Niranjan B; Hedwards S; Porter LH; Goode DL; Simpson KJ; Taylor RA; Risbridger GP; Lawrence MG
    J Pathol; 2024 Jun; 263(2):242-256. PubMed ID: 38578195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors.
    Dai X; Wang Z; Wei W
    Cell Cycle; 2017; 16(24):2326-2329. PubMed ID: 29108467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting both BET and CBP/EP300 proteins with the novel dual inhibitors NEO2734 and NEO1132 leads to anti-tumor activity in multiple myeloma.
    Ryan KR; Giles F; Morgan GJ
    Eur J Haematol; 2021 Jan; 106(1):90-99. PubMed ID: 32997383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation.
    Wu F; Dai X; Gan W; Wan L; Li M; Mitsiades N; Wei W; Ding Q; Zhang J
    Cancer Lett; 2017 Jan; 385():207-214. PubMed ID: 27780719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic targeting of p300/CBP HAT domain for the treatment of NUT midline carcinoma.
    Zhang X; Zegar T; Lucas A; Morrison-Smith C; Knox T; French CA; Knapp S; Müller S; Siveke JT
    Oncogene; 2020 Jun; 39(24):4770-4779. PubMed ID: 32366905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insights into BET Client Recognition of Endometrial and Prostate Cancer-Associated SPOP Mutants.
    Ostertag MS; Hutwelker W; Plettenburg O; Sattler M; Popowicz GM
    J Mol Biol; 2019 May; 431(11):2213-2221. PubMed ID: 31026449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPOP is essential for DNA-protein cross-link repair in prostate cancer cells: SPOP-dependent removal of topoisomerase 2A from the topoisomerase 2A-DNA cleavage complex.
    Watanabe R; Maekawa M; Hieda M; Taguchi T; Miura N; Kikugawa T; Saika T; Higashiyama S
    Mol Biol Cell; 2020 Mar; 31(6):478-490. PubMed ID: 31967940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHD1 and SPOP synergistically protect prostate epithelial cells from DNA damage.
    Zhu Y; Wen J; Huang G; Mittlesteadt J; Wen X; Lu X
    Prostate; 2021 Jan; 81(1):81-88. PubMed ID: 33022763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutated SPOP E3 Ligase Promotes 17βHSD4 Protein Degradation to Drive Androgenesis and Prostate Cancer Progression.
    Shi L; Yan Y; He Y; Yan B; Pan Y; Orme JJ; Zhang J; Xu W; Pang J; Huang H
    Cancer Res; 2021 Jul; 81(13):3593-3606. PubMed ID: 33762355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPOP mutation induces DNA methylation via stabilizing GLP/G9a.
    Zhang J; Gao K; Xie H; Wang D; Zhang P; Wei T; Yan Y; Pan Y; Ye W; Chen H; Shi Q; Li Y; Zhao SM; Hou X; Weroha SJ; Wang Y; Zhang J; Karnes RJ; He HH; Wang L; Wang C; Huang H
    Nat Commun; 2021 Sep; 12(1):5716. PubMed ID: 34588438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and optimization of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 bromodomain inhibitors for the treatment of castration-resistant prostate cancer.
    Xiang Q; Wang C; Zhang Y; Xue X; Song M; Zhang C; Li C; Wu C; Li K; Hui X; Zhou Y; Smaill JB; Patterson AV; Wu D; Ding K; Xu Y
    Eur J Med Chem; 2018 Mar; 147():238-252. PubMed ID: 29448139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostate Cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly.
    Shi Q; Zhu Y; Ma J; Chang K; Ding D; Bai Y; Gao K; Zhang P; Mo R; Feng K; Zhao X; Zhang L; Sun H; Jiao D; Chen Y; Sun Y; Zhao SM; Huang H; Li Y; Ren S; Wang C
    Mol Cancer; 2019 Nov; 18(1):170. PubMed ID: 31771591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-β signaling regulates
    Jiao C; Meng T; Zhou C; Wang X; Wang P; Lu M; Tan X; Wei Q; Ge X; Jin J
    Aging (Albany NY); 2020 May; 12(9):7747-7760. PubMed ID: 32364525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression.
    Fan Y; Hou T; Dan W; Zhu Y; Liu B; Wei Y; Wang Z; Gao Y; Zeng J; Li L
    Cell Death Differ; 2022 Aug; 29(8):1611-1624. PubMed ID: 35194188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer.
    Jin X; Wang J; Gao K; Zhang P; Yao L; Tang Y; Tang L; Ma J; Xiao J; Zhang E; Zhu J; Zhang B; Zhao SM; Li Y; Ren S; Huang H; Yu L; Wang C
    PLoS Genet; 2017 Apr; 13(4):e1006748. PubMed ID: 28448495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.