BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 31559815)

  • 1. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling.
    Ye Q; He B; Zhang Y; Zhang J; Liu S; Zhou F
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39171-39178. PubMed ID: 31559815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.
    Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG
    J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications.
    Zhao W; Ye Q; Hu H; Wang X; Zhou F
    J Mater Chem B; 2014 Sep; 2(33):5352-5357. PubMed ID: 32261755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic).
    Xu G; Liu X; Liu P; Pranantyo D; Neoh KG; Kang ET
    Langmuir; 2017 Jul; 33(27):6925-6936. PubMed ID: 28617605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel.
    Yang WJ; Cai T; Neoh KG; Kang ET; Dickinson GH; Teo SL; Rittschof D
    Langmuir; 2011 Jun; 27(11):7065-76. PubMed ID: 21563843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties.
    Asha AB; Chen Y; Zhang H; Ghaemi S; Ishihara K; Liu Y; Narain R
    Langmuir; 2019 Feb; 35(5):1621-1630. PubMed ID: 30558423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces.
    Yuan S; Wan D; Liang B; Pehkonen SO; Ting YP; Neoh KG; Kang ET
    Langmuir; 2011 Mar; 27(6):2761-74. PubMed ID: 21338094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus.
    He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q
    Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
    Liu P; Huang T; Liu P; Shi S; Chen Q; Li L; Shen J
    J Colloid Interface Sci; 2016 Oct; 480():91-101. PubMed ID: 27416290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zwitterionic surface modification of polyethylene via atmospheric plasma-induced polymerization of (vinylbenzyl-)sulfobetaine and evaluation of antifouling properties.
    Burmeister N; Vollstedt C; Kröger C; Friedrich T; Scharnagl N; Rohnke M; Zorn E; Wicha SG; Streit WR; Maison W
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113195. PubMed ID: 36758459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
    Li W; Liu Q; Liu L
    J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.
    Zhao YH; Zhu XY; Wee KH; Bai R
    J Phys Chem B; 2010 Feb; 114(7):2422-9. PubMed ID: 20121056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate).
    Tu Q; Wang JC; Liu R; He J; Zhang Y; Shen S; Xu J; Liu J; Yuan MS; Wang J
    Colloids Surf B Biointerfaces; 2013 Feb; 102():361-70. PubMed ID: 23006574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator.
    Kuang J; Messersmith PB
    Langmuir; 2012 May; 28(18):7258-66. PubMed ID: 22506651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer brushes on structural surfaces: a novel synergistic strategy for perfectly resisting algae settlement.
    Zhang Y; Hu H; Pei X; Liu Y; Ye Q; Zhou F
    Biomater Sci; 2017 Nov; 5(12):2493-2500. PubMed ID: 29115306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.
    Xu C; Hu X; Wang J; Zhang YM; Liu XJ; Xie BB; Yao C; Li Y; Li XS
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17337-45. PubMed ID: 26191785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.