BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31559980)

  • 1. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip.
    Boot RC; Roscani A; van Buren L; Maity S; Koenderink GH; Boukany PE
    Lab Chip; 2023 Mar; 23(7):1768-1778. PubMed ID: 36809459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.
    Davidson PM; Sliz J; Isermann P; Denais C; Lammerding J
    Integr Biol (Camb); 2015 Dec; 7(12):1534-46. PubMed ID: 26549481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and deformation of the nucleus in micropipette aspiration experiment.
    Vaziri A; Mofrad MR
    J Biomech; 2007; 40(9):2053-62. PubMed ID: 17112531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies.
    Mak M; Erickson D
    Integr Biol (Camb); 2013 Nov; 5(11):1374-84. PubMed ID: 24056324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of the cell nucleus and the effect of emerin deficiency.
    Rowat AC; Lammerding J; Ipsen JH
    Biophys J; 2006 Dec; 91(12):4649-64. PubMed ID: 16997877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
    Maremonti MI; Panzetta V; Dannhauser D; Netti PA; Causa F
    J R Soc Interface; 2022 Apr; 19(189):20210880. PubMed ID: 35440204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unified Linear Viscoelastic Model of the Cell Nucleus Defines the Mechanical Contributions of Lamins and Chromatin.
    Wintner O; Hirsch-Attas N; Schlossberg M; Brofman F; Friedman R; Kupervaser M; Kitsberg D; Buxboim A
    Adv Sci (Weinh); 2020 Apr; 7(8):1901222. PubMed ID: 32328409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.
    Guillou L; Dahl JB; Lin JG; Barakat AI; Husson J; Muller SJ; Kumar S
    Biophys J; 2016 Nov; 111(9):2039-2050. PubMed ID: 27806284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechano-Node-Pore Sensing: A Rapid, Label-Free Platform for Multi-Parameter Single-Cell Viscoelastic Measurements.
    Lai A; Rex R; Cotner KL; Dong A; Lustig M; Sohn LL
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36533823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures.
    Dahl KN; Engler AJ; Pajerowski JD; Discher DE
    Biophys J; 2005 Oct; 89(4):2855-64. PubMed ID: 16055543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unbiased High-Precision Cell Mechanical Measurements with Microconstrictions.
    Lange JR; Metzner C; Richter S; Schneider W; Spermann M; Kolb T; Whyte G; Fabry B
    Biophys J; 2017 Apr; 112(7):1472-1480. PubMed ID: 28402889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
    Lange JR; Steinwachs J; Kolb T; Lautscham LA; Harder I; Whyte G; Fabry B
    Biophys J; 2015 Jul; 109(1):26-34. PubMed ID: 26153699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile and High-throughput Force Measurement Platform for Dorsal Cell Mechanics.
    Park S; Joo YK; Chen Y
    Sci Rep; 2019 Sep; 9(1):13286. PubMed ID: 31527594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing compressibility of the nuclear interior in wild-type and lamin deficient cells using microscopic imaging and computational modeling.
    González Avalos P; Reichenzeller M; Eils R; Gladilin E
    J Biomech; 2011 Oct; 44(15):2642-8. PubMed ID: 21906741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping.
    Deng Y; Davis SP; Yang F; Paulsen KS; Kumar M; Sinnott DeVaux R; Wang X; Conklin DS; Oberai A; Herschkowitz JI; Chung AJ
    Small; 2017 Jul; 13(28):. PubMed ID: 28544415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical Biomarkers of Disease Progression: On-Chip Monitoring of Changes in Mechanobiology of Colorectal Cancer Cells.
    Armistead FJ; Gala De Pablo J; Gadêlha H; Peyman SA; Evans SD
    Sci Rep; 2020 Feb; 10(1):3254. PubMed ID: 32094413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.