These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31559999)

  • 1. ssDNA-amphiphile architecture used to control dimensions of DNA nanotubes.
    Kuang H; Gartner Iii TE; Dorneles de Mello M; Guo J; Zuo X; Tsapatsis M; Jayaraman A; Kokkoli E
    Nanoscale; 2019 Nov; 11(42):19850-19861. PubMed ID: 31559999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Assembly of Single-Tail ssDNA-Amphiphiles through π-π Interactions.
    Kuang H; Wang D; Schneiderman Z; Tsapatsis M; Kokkoli E
    Bioconjug Chem; 2022 Nov; 33(11):2035-2040. PubMed ID: 35699360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spacers on the self-assembly of DNA aptamer-amphiphiles into micelles and nanotapes.
    Pearce TR; Waybrant B; Kokkoli E
    Chem Commun (Camb); 2014 Jan; 50(2):210-2. PubMed ID: 24216758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polyethylene glycol, alkyl, and oligonucleotide spacers on the binding, secondary structure, and self-assembly of fractalkine binding FKN-S2 aptamer-amphiphiles.
    Waybrant B; Pearce TR; Kokkoli E
    Langmuir; 2014 Jul; 30(25):7465-74. PubMed ID: 24849928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ssDNA nanotubes from spherical micelles and their use as a delivery vehicle for chemotherapeutics and senolytics to triple negative breast cancer cells.
    Lin L; Schneiderman Z; Venkatraman A; Kokkoli E
    Nanoscale; 2023 Jun; 15(22):9801-9812. PubMed ID: 37200016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-molecule study reveals novel rod-like structures formed by a thrombin aptamer repeat sequence.
    Liu J; Feng W; Zhang W
    Nanoscale; 2020 Feb; 12(6):4159-4166. PubMed ID: 32022812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics.
    Johnson RR; Johnson AT; Klein ML
    Nano Lett; 2008 Jan; 8(1):69-75. PubMed ID: 18069867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
    Manandhar A; Chakraborty K; Tang PK; Kang M; Zhang P; Cui H; Loverde SM
    J Phys Chem B; 2019 Dec; 123(50):10582-10593. PubMed ID: 31749360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.
    Hwu JR; Kapoor M; Li RY; Lin YC; Horng JC; Tsay SC
    Chem Asian J; 2014 Dec; 9(12):3408-12. PubMed ID: 25294777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA origami templated self-assembly of discrete length single wall carbon nanotubes.
    Zhao Z; Liu Y; Yan H
    Org Biomol Chem; 2013 Jan; 11(4):596-8. PubMed ID: 23208726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Detection of Single-Stranded DNA Molecules Using a Glass Nanocapillary Functionalized with DNA.
    Youn Y; Lee C; Kim JH; Chang YW; Kim DY; Yoo KH
    Anal Chem; 2016 Jan; 88(1):688-94. PubMed ID: 26609706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
    Kang M; Chakraborty K; Loverde SM
    J Chem Inf Model; 2018 Jun; 58(6):1164-1168. PubMed ID: 29856610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the nanoviscosity effect of a G-quadruplex and single-strand DNA using fluorescence correlation spectroscopy.
    Lee D; Kim M; Kim SY; Shin H; Kim SW; Park I
    J Chem Phys; 2015 Jan; 142(2):025101. PubMed ID: 25591385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-assisted dispersion and separation of carbon nanotubes.
    Zheng M; Jagota A; Semke ED; Diner BA; McLean RS; Lustig SR; Richardson RE; Tassi NG
    Nat Mater; 2003 May; 2(5):338-42. PubMed ID: 12692536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles.
    Ziserman L; Lee HY; Raghavan SR; Mor A; Danino D
    J Am Chem Soc; 2011 Mar; 133(8):2511-7. PubMed ID: 21244023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.