These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31559999)

  • 21. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly.
    Zheng M; Jagota A; Strano MS; Santos AP; Barone P; Chou SG; Diner BA; Dresselhaus MS; McLean RS; Onoa GB; Samsonidze GG; Semke ED; Usrey M; Walls DJ
    Science; 2003 Nov; 302(5650):1545-8. PubMed ID: 14645843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic properties of nonideal nanotube materials: helical symmetry breaking in DNA hybrids.
    Rotkin SV
    Annu Rev Phys Chem; 2010; 61():241-61. PubMed ID: 19947884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.
    Ghosh S; Patel N; Chakrabarti R
    J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomolecular recognition ability of RecA proteins for DNA on single-walled carbon nanotubes.
    Oura S; Ito M; Nii D; Homma Y; Umemura K
    Colloids Surf B Biointerfaces; 2015 Feb; 126():496-501. PubMed ID: 25612818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
    Lo PK; Altvater F; Sleiman HF
    J Am Chem Soc; 2010 Aug; 132(30):10212-4. PubMed ID: 20662492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.
    Aldaye FA; Lo PK; Karam P; McLaughlin CK; Cosa G; Sleiman HF
    Nat Nanotechnol; 2009 Jun; 4(6):349-52. PubMed ID: 19498394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-stranded DNA functionalized single-walled carbon nanotubes for microbiosensors via layer-by-layer electrostatic self-assembly.
    Kang Z; Yan X; Zhang Y; Pan J; Shi J; Zhang X; Liu Y; Choi JH; Porterfield DM
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3784-9. PubMed ID: 24606733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of chiral DNA nanotubes.
    Mitchell JC; Harris JR; Malo J; Bath J; Turberfield AJ
    J Am Chem Soc; 2004 Dec; 126(50):16342-3. PubMed ID: 15600334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Luminescent Helical Nanofiber Self-Assembled from a Cholesterol-Based Metalloamphiphile and Its Application in DNA Conformation Recognition.
    Lei H; Liu J; Yan J; Quan J; Fang Y
    Langmuir; 2016 Oct; 32(40):10350-10357. PubMed ID: 27648676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled nanotubes and helical tapes from diacetylene nonionic amphiphiles. Structural studies before and after polymerization.
    Perino A; Schmutz M; Meunier S; Mésini PJ; Wagner A
    Langmuir; 2011 Oct; 27(19):12149-55. PubMed ID: 21902211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic and microscopic analyses of rod-shaped gold nanoparticles interacting with single-stranded DNA oligonucleotides.
    Saber R; Shakoori Z; Sarkar S; Tavoosidana G; Kharrazi S; Gill P
    IET Nanobiotechnol; 2013 Jun; 7(2):42-9. PubMed ID: 24046904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of DNA nanotubes with controllable diameters.
    Wilner OI; Orbach R; Henning A; Teller C; Yehezkeli O; Mertig M; Harries D; Willner I
    Nat Commun; 2011 Nov; 2():540. PubMed ID: 22086340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Persistence Length and Cooperativity Estimation of Single Stranded DNA using FCS Combined with HYDRO Program.
    Jung S; Lee D; Kim SW; Kim SY
    J Fluoresc; 2017 Jul; 27(4):1373-1383. PubMed ID: 28367589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment.
    Markegard CB; Fu IW; Reddy KA; Nguyen HD
    J Phys Chem B; 2015 Feb; 119(5):1823-34. PubMed ID: 25581253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.