BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31560002)

  • 1. Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic properties towards formic acid oxidation.
    Cai B; Ma Y; Wang S; Yi N; Zheng Y; Qiu X; Tang Y; Bao J
    Nanoscale; 2019 Oct; 11(39):18015-18020. PubMed ID: 31560002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyhedral Palladium-Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction.
    Fu GT; Liu C; Zhang Q; Chen Y; Tang YW
    Sci Rep; 2015 Sep; 5():13703. PubMed ID: 26329555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches.
    Zhang G; Wang Y; Ma Y; Zhang H; Zheng Y
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.
    Li FM; Kang YQ; Liu HM; Zhai YN; Hu MC; Chen Y
    J Colloid Interface Sci; 2018 Mar; 514():299-305. PubMed ID: 29275248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting the Electrocatalytic Formic Acid Oxidation Activity via P-PdAuAg Quaternary Alloying.
    Huang S; Li J; Wang X; Kang Y; Zhao Y; Wang H; Zhang P; Zhang L; Zhao C
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36916029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses.
    Xu H; Shang H; Wang C; Jin L; Chen C; Du Y
    Nanoscale; 2020 Jan; 12(3):2126-2132. PubMed ID: 31913388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanoporous PdCo alloy as a highly active electrocatalyst for the oxygen-reduction reaction and formic acid electrooxidation.
    Xu C; Liu Y; Zhang H; Geng H
    Chem Asian J; 2013 Nov; 8(11):2721-8. PubMed ID: 23868702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape Control of Monodispersed Sub-5 nm Pd Tetrahedrons and Laciniate Pd Nanourchins by Maneuvering the Dispersed State of Additives for Boosting ORR Performance.
    Zhang H; Qiu X; Chen Y; Wang S; Skrabalak SE; Tang Y
    Small; 2020 Feb; 16(6):e1906026. PubMed ID: 31899600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction.
    Qi Y; Wu J; Zhang H; Jiang Y; Jin C; Fu M; Yang H; Yang D
    Nanoscale; 2014 Jun; 6(12):7012-8. PubMed ID: 24842604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple synthesis of self-supported hierarchical AuPd alloyed nanowire networks for boosting electrocatalytic activity toward formic acid oxidation.
    Yuan T; Chen HY; Ma X; Feng JJ; Yuan PX; Wang AJ
    J Colloid Interface Sci; 2018 Mar; 513():324-330. PubMed ID: 29161647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.
    Jiang X; Yan X; Ren W; Jia Y; Chen J; Sun D; Xu L; Tang Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31076-31082. PubMed ID: 27786447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid.
    Zhao Q; Ge C; Cai Y; Qiao Q; Jia X
    J Colloid Interface Sci; 2018 Mar; 514():425-432. PubMed ID: 29278798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction.
    Mondal S; Raj CR
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14110-14119. PubMed ID: 30912919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanogel-Derived Synthesis of Porous PdFe Nanohydrangeas as Electrocatalysts for Oxygen Reduction Reaction.
    Wan J; Liu Z; Yang X; Cheng P; Yan C
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PdAg Nanoparticles with Different Sizes: Facile One-Step Synthesis and High Electrocatalytic Activity for Formic Acid Oxidation.
    Yang L; Wang Y; Feng H; Zeng H; Tan C; Yao J; Zhang J; Jiang L; Sun Y
    Chem Asian J; 2021 Jan; 16(1):34-38. PubMed ID: 33245210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. La
    Ali H; Kanodarwala FK; Majeed I; Stride JA; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32581-32590. PubMed ID: 27933814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities.
    Zhang ZC; Hui JF; Guo ZG; Yu QY; Xu B; Zhang X; Liu ZC; Xu CM; Gao JS; Wang X
    Nanoscale; 2012 Apr; 4(8):2633-9. PubMed ID: 22402765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of a Porous Pd/Cu Alloy and its Enhanced Performance toward Methanol and Formic Acid Electrooxidation.
    Yan B; Wang C; Xu H; Zhang K; Li S; Du Y
    Chempluschem; 2017 Aug; 82(8):1121-1128. PubMed ID: 31957330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile dual tuning of PtPdP nanoparticles by metal-nonmetal co-incorporation and dendritic engineering for enhanced formic acid oxidation electrocatalysis.
    Li C; Xu Y; Yu H; Deng K; Liu S; Wang Z; Li X; Wang L; Wang H
    Nanotechnology; 2020 Jan; 31(4):045401. PubMed ID: 31574496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.