These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31560012)

  • 1. On the role of the metal oxide/reactive electrode interface during the forming procedure of valence change ReRAM devices.
    Kindsmüller A; Meledin A; Mayer J; Waser R; Wouters DJ
    Nanoscale; 2019 Oct; 11(39):18201-18208. PubMed ID: 31560012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of oxygen exchange reaction at the ohmic interface in Ta
    Kim W; Menzel S; Wouters DJ; Guo Y; Robertson J; Roesgen B; Waser R; Rana V
    Nanoscale; 2016 Oct; 8(41):17774-17781. PubMed ID: 27523172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.
    Cho DY; Luebben M; Wiefels S; Lee KS; Valov I
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19287-19295. PubMed ID: 28508634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system.
    Gao S; Zeng F; Wang M; Wang G; Song C; Pan F
    Phys Chem Chem Phys; 2015 May; 17(19):12849-56. PubMed ID: 25907552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Switching Phenomenon in Metal-Tantalum Oxide Interface.
    Yawar A; Park MR; Hu Q; Song WJ; Yoon TS; Choi YJ; Kang CJ
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7564-8. PubMed ID: 26726372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices.
    Ambrosi E; Bricalli A; Laudato M; Ielmini D
    Faraday Discuss; 2019 Feb; 213(0):87-98. PubMed ID: 30364922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin TiO
    Li XY; Shao XL; Wang YC; Jiang H; Hwang CS; Zhao JS
    Nanoscale; 2017 Feb; 9(6):2358-2368. PubMed ID: 28144676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbO
    Aziz J; Kim H; Rehman S; Khan MF; Kim DK
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33138226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Influence of Carbon Interface Layers in Metal/Oxide Resistive Switches.
    Cho DY; Kim KJ; Lee KS; Lübben M; Chen S; Valov I
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18528-18536. PubMed ID: 36989142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories.
    Chen S; Valov I
    Adv Mater; 2022 Jan; 34(3):e2105022. PubMed ID: 34695257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits.
    R RK; Kalaboukhov A; Weng YC; Rathod KN; Johansson T; Lindblad A; Kamalakar MV; Sarkar T
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19225-19234. PubMed ID: 38579143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial synthesis of Cu/(Ta(x)Nb(1-x))2O5 stack structure for nanoionics-type ReRAM device.
    Nagata T; Haemori M; Chikyow T
    ACS Comb Sci; 2013 Aug; 15(8):435-8. PubMed ID: 23883301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin film deposition of metal oxides in resistance switching devices: electrode material dependence of resistance switching in manganite films.
    Nakamura T; Homma K; Tachibana K
    Nanoscale Res Lett; 2013 Feb; 8(1):76. PubMed ID: 23414549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Control of Oxygen Vacancies in TaO
    Egorov KV; Kuzmichev DS; Chizhov PS; Lebedinskii YY; Hwang CS; Markeev AM
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13286-13292. PubMed ID: 28350159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on the resistance switching of Ag
    Lee TS; Lee NJ; Abbas H; Hu Q; Yoon TS; Lee HH; Le Shim E; Kang CJ
    Nanotechnology; 2018 Jan; 29(3):035202. PubMed ID: 29251266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of oxidizable electrode material on resistive switching characteristics of ZnO(x)S(1-x) films.
    Cho K; Park S; Chung I; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8187-90. PubMed ID: 25958497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrode-induced digital-to-analog resistive switching in TaO x -based RRAM devices.
    Li X; Wu H; Bin Gao ; Wu W; Wu D; Deng N; Cai J; Qian H
    Nanotechnology; 2016 Jul; 27(30):305201. PubMed ID: 27302281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced resistive switching in forming-free graphene oxide films embedded with gold nanoparticles deposited by electrophoresis.
    Khurana G; Misra P; Kumar N; Kooriyattil S; Scott JF; Katiyar RS
    Nanotechnology; 2016 Jan; 27(1):015702. PubMed ID: 26594840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate).
    Wang Z; Zeng F; Yang J; Chen C; Pan F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):447-53. PubMed ID: 22201222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale-Resistive Switching in Forming-Free Zinc Oxide Memristive Structures.
    Tominov RV; Vakulov ZE; Polupanov NV; Saenko AV; Avilov VI; Ageev OA; Smirnov VA
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.