BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31560053)

  • 1. High temperature susceptibility of sexual reproduction in crop plants.
    Lohani N; Singh MB; Bhalla PL
    J Exp Bot; 2020 Jan; 71(2):555-568. PubMed ID: 31560053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermosensitivity of pollen: a molecular perspective.
    Goel K; Kundu P; Sharma P; Zinta G
    Plant Cell Rep; 2023 May; 42(5):843-857. PubMed ID: 37029819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.
    Mesihovic A; Iannacone R; Firon N; Fragkostefanakis S
    Plant Reprod; 2016 Jun; 29(1-2):93-105. PubMed ID: 27016360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum.
    Chiluwal A; Bheemanahalli R; Kanaganahalli V; Boyle D; Perumal R; Pokharel M; Oumarou H; Jagadish SVK
    Plant Cell Environ; 2020 Feb; 43(2):448-462. PubMed ID: 31702833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of stress combination on reproductive processes in crops.
    Sinha R; Fritschi FB; Zandalinas SI; Mittler R
    Plant Sci; 2021 Oct; 311():111007. PubMed ID: 34482910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neglected other half - role of the pistil in plant heat stress responses.
    Wang Y; Impa SM; Sunkar R; Jagadish SVK
    Plant Cell Environ; 2021 Jul; 44(7):2200-2210. PubMed ID: 33866576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea.
    Kumari P; Rastogi A; Yadav S
    Mol Biol Rep; 2020 Jun; 47(6):4659-4670. PubMed ID: 32133603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba).
    Bishop J; Jones HE; O'Sullivan DM; Potts SG
    J Exp Bot; 2017 Apr; 68(8):2055-2063. PubMed ID: 27927999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. It is time to move: Heat-induced translocation events.
    Zhu T; Yang SL; De Smet I
    Curr Opin Plant Biol; 2023 Oct; 75():102406. PubMed ID: 37354735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat of the moment: extreme heat poses a risk to bee-plant interactions and crop yields.
    Walters J; Zavalnitskaya J; Isaacs R; Szendrei Z
    Curr Opin Insect Sci; 2022 Aug; 52():100927. PubMed ID: 35500861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica.
    MarĂ­n-Guirao L; Entrambasaguas L; Ruiz JM; Procaccini G
    Mol Ecol; 2019 May; 28(10):2486-2501. PubMed ID: 30938465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.
    Ozga JA; Kaur H; Savada RP; Reinecke DM
    J Exp Bot; 2017 Apr; 68(8):1885-1894. PubMed ID: 28011717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From the floret to the canopy: High temperature tolerance during flowering.
    Liu M; Zhou Y; Sun J; Mao F; Yao Q; Li B; Wang Y; Gao Y; Dong X; Liao S; Wang P; Huang S
    Plant Commun; 2023 Nov; 4(6):100629. PubMed ID: 37226443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does timing, duration and severity of heat stress influence pollen-pistil interactions in angiosperms?
    Snider JL; Oosterhuis DM
    Plant Signal Behav; 2011 Jul; 6(7):930-3. PubMed ID: 21628998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops.
    Sharma L; Priya M; Kaushal N; Bhandhari K; Chaudhary S; Dhankher OP; Prasad PVV; Siddique KHM; Nayyar H
    J Exp Bot; 2020 Jan; 71(2):569-594. PubMed ID: 31328236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breeding for plant heat tolerance at vegetative and reproductive stages.
    Driedonks N; Rieu I; Vriezen WH
    Plant Reprod; 2016 Jun; 29(1-2):67-79. PubMed ID: 26874710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fruitful factors: what limits seed production of flowering plants in the alpine?
    Straka JR; Starzomski BM
    Oecologia; 2015 May; 178(1):249-60. PubMed ID: 25447635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollen development at high temperature and role of carbon and nitrogen metabolites.
    Santiago JP; Sharkey TD
    Plant Cell Environ; 2019 Oct; 42(10):2759-2775. PubMed ID: 31077385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives.
    Haider S; Iqbal J; Naseer S; Yaseen T; Shaukat M; Bibi H; Ahmad Y; Daud H; Abbasi NL; Mahmood T
    Plant Cell Rep; 2021 Dec; 40(12):2247-2271. PubMed ID: 33890138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-Seq Highlights Molecular Events Associated With Impaired Pollen-Pistil Interactions Following Short-Term Heat Stress in
    Lohani N; Singh MB; Bhalla PL
    Front Plant Sci; 2020; 11():622748. PubMed ID: 33584763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.