BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31560053)

  • 21. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat stress response mechanisms in pollen development.
    Chaturvedi P; Wiese AJ; Ghatak A; Záveská Drábková L; Weckwerth W; Honys D
    New Phytol; 2021 Jul; 231(2):571-585. PubMed ID: 33818773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat stress during flowering in cereals - effects and adaptation strategies.
    Jagadish SVK
    New Phytol; 2020 Jun; 226(6):1567-1572. PubMed ID: 31943230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological plasticity to high temperature stress in chickpea: Adaptive responses and variable tolerance.
    Pareek A; Rathi D; Mishra D; Chakraborty S; Chakraborty N
    Plant Sci; 2019 Dec; 289():110258. PubMed ID: 31623797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates.
    Lavania D; Dhingra A; Siddiqui MH; Al-Whaibi MH; Grover A
    Plant Physiol Biochem; 2015 Jan; 86():100-108. PubMed ID: 25438142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reproductive heat tolerance in a Mojave Desert annual plant, Trianthema portulacastrum.
    Branch HA; Sage RF
    Am J Bot; 2018 Dec; 105(12):2018-2024. PubMed ID: 30508226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat stress effects on source-sink relationships and metabolome dynamics in wheat.
    Abdelrahman M; Burritt DJ; Gupta A; Tsujimoto H; Tran LP
    J Exp Bot; 2020 Jan; 71(2):543-554. PubMed ID: 31232445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Too hot to handle, the adverse effect of heat stress on crop yield.
    van Es SW
    Physiol Plant; 2020 Aug; 169(4):499-500. PubMed ID: 32729121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hot science in rice research: How rice plants cope with heat stress.
    Li JY; Yang C; Xu J; Lu HP; Liu JX
    Plant Cell Environ; 2023 Apr; 46(4):1087-1103. PubMed ID: 36478590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity.
    Yeh CH; Kaplinsky NJ; Hu C; Charng YY
    Plant Sci; 2012 Oct; 195():10-23. PubMed ID: 22920995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the biggest opportunities.
    Lv X; Yao Q; Mao F; Liu M; Wang Y; Wang X; Gao Y; Wang Y; Liao S; Wang P; Huang S
    J Exp Bot; 2024 Jan; ():. PubMed ID: 38183327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective.
    Chaudhary S; Devi P; HanumanthaRao B; Jha UC; Sharma KD; Prasad PVV; Kumar S; Siddique KHM; Nayyar H
    Front Plant Sci; 2022; 13():878498. PubMed ID: 35837452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress.
    Ferguson JN; Tidy AC; Murchie EH; Wilson ZA
    Plant Cell Environ; 2021 Jul; 44(7):2066-2089. PubMed ID: 33538010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant heat stress: Concepts directing future research.
    Jagadish SVK; Way DA; Sharkey TD
    Plant Cell Environ; 2021 Jul; 44(7):1992-2005. PubMed ID: 33745205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L.
    Kaur R; Sinha K; Bhunia RK
    Mol Biol Rep; 2019 Apr; 46(2):2577-2593. PubMed ID: 30758807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects.
    Chaudhary S; Devi P; Bhardwaj A; Jha UC; Sharma KD; Prasad PVV; Siddique KHM; Bindumadhava H; Kumar S; Nayyar H
    Front Plant Sci; 2020; 11():587264. PubMed ID: 33193540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of redox homeostasis in thermo-tolerance under a climate change scenario.
    de Pinto MC; Locato V; Paradiso A; De Gara L
    Ann Bot; 2015 Sep; 116(4):487-96. PubMed ID: 26034009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flowers and climate change: a metabolic perspective.
    Borghi M; Perez de Souza L; Yoshida T; Fernie AR
    New Phytol; 2019 Dec; 224(4):1425-1441. PubMed ID: 31257600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature stress and plant sexual reproduction: uncovering the weakest links.
    Zinn KE; Tunc-Ozdemir M; Harper JF
    J Exp Bot; 2010 Apr; 61(7):1959-68. PubMed ID: 20351019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization.
    Johnson MA; Harper JF; Palanivelu R
    Annu Rev Plant Biol; 2019 Apr; 70():809-837. PubMed ID: 30822112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.