These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 31560141)
1. CD44-Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. Gu W; An J; Meng H; Yu N; Zhong Y; Meng F; Xu Y; Cornelissen JJLM; Zhong Z Adv Mater; 2019 Nov; 31(46):e1904742. PubMed ID: 31560141 [TBL] [Abstract][Full Text] [Related]
2. A6 peptide activates CD44 adhesive activity, induces FAK and MEK phosphorylation, and inhibits the migration and metastasis of CD44-expressing cells. Piotrowicz RS; Damaj BB; Hachicha M; Incardona F; Howell SB; Finlayson M Mol Cancer Ther; 2011 Nov; 10(11):2072-82. PubMed ID: 21885863 [TBL] [Abstract][Full Text] [Related]
3. CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Guo B; Wei J; Wang J; Sun Y; Yuan J; Zhong Z; Meng F Acta Biomater; 2022 Jun; 145():200-209. PubMed ID: 35430336 [TBL] [Abstract][Full Text] [Related]
4. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia. Gu W; Liu T; Fan D; Zhang J; Xia Y; Meng F; Xu Y; Cornelissen JJLM; Liu Z; Zhong Z J Control Release; 2021 Jan; 329():706-716. PubMed ID: 33031878 [TBL] [Abstract][Full Text] [Related]
5. Targeted delivery of HSP90 inhibitors for efficient therapy of CD44-positive acute myeloid leukemia and solid tumor-colon cancer. Jia L; Yang H; Liu Y; Zhou Y; Li G; Zhou Q; Xu Y; Huang Z; Ye F; Ye J; Liu A; Ji C J Nanobiotechnology; 2024 Apr; 22(1):198. PubMed ID: 38649957 [TBL] [Abstract][Full Text] [Related]
6. A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Zhang C; Wang X; Cheng R; Zhong Z Biomacromolecules; 2020 Jun; 21(6):2049-2059. PubMed ID: 32338875 [TBL] [Abstract][Full Text] [Related]
7. HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor. Ding L; Gu W; Zhang Y; Yue S; Sun H; Cornelissen JJLM; Zhong Z Biomacromolecules; 2019 Oct; 20(10):3855-3863. PubMed ID: 31513391 [TBL] [Abstract][Full Text] [Related]
8. Low-toxicity transferrin-guided polymersomal doxorubicin for potent chemotherapy of orthotopic hepatocellular carcinoma in vivo. Wei Y; Gu X; Cheng L; Meng F; Storm G; Zhong Z Acta Biomater; 2019 Jul; 92():196-204. PubMed ID: 31102765 [TBL] [Abstract][Full Text] [Related]
9. Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: in vitro and in vivo studies. Ansari L; Jaafari MR; Bastami TR; Malaekeh-Nikouei B Artif Cells Nanomed Biotechnol; 2018; 46(sup2):594-606. PubMed ID: 29688064 [TBL] [Abstract][Full Text] [Related]
10. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Fang Y; Yang W; Cheng L; Meng F; Zhang J; Zhong Z Acta Biomater; 2017 Dec; 64():323-333. PubMed ID: 29030307 [TBL] [Abstract][Full Text] [Related]
11. CD44-targeted vesicles encapsulating granzyme B as artificial killer cells for potent inhibition of human multiple myeloma in mice. Zhong Y; Meng F; Zhang W; Li B; van Hest JCM; Zhong Z J Control Release; 2020 Apr; 320():421-430. PubMed ID: 32027936 [TBL] [Abstract][Full Text] [Related]
12. A novel FAPα-based Z-Gly-Pro epirubicin prodrug for improving tumor-targeting chemotherapy. Wang J; Li Q; Li X; Yuan W; Huang S; Cai S; Xu J Eur J Pharmacol; 2017 Nov; 815():166-172. PubMed ID: 28919026 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effect of epirubicin-loaded lipid microbubbles with conjugated anti-ABCG2 antibody combined with therapeutic ultrasound on multiple myeloma cancer stem cells. Shi F; Yang F; He X; Zhang Y; Wu S; Li M; Zhang Y; Di W; Dou J; Gu N J Drug Target; 2016; 24(1):34-46. PubMed ID: 26204324 [TBL] [Abstract][Full Text] [Related]
14. Folic acid Targeted Polymeric Micelles Based on Tocopherol Succinate- Pulluan as an Effective Carrier for Epirubicin: Preparation, Characterization and In-vitro Cytotoxicity Assessment. Hassanzadeh F; Mehdifar M; Varshosaz J; Khodarahmi GA; Rostami M Curr Drug Deliv; 2018 Feb; 15(2):235-246. PubMed ID: 28571542 [TBL] [Abstract][Full Text] [Related]
15. A urokinase-derived peptide (A6) increases survival of mice bearing orthotopically grown prostate cancer and reduces lymph node metastasis. Boyd DD; Kim SJ; Wang H; Jones TR; Gallick GE Am J Pathol; 2003 Feb; 162(2):619-26. PubMed ID: 12547719 [TBL] [Abstract][Full Text] [Related]
16. An antiangiogenic urokinase-derived peptide combined with tamoxifen decreases tumor growth and metastasis in a syngeneic model of breast cancer. Guo Y; Mazar AP; Lebrun JJ; Rabbani SA Cancer Res; 2002 Aug; 62(16):4678-84. PubMed ID: 12183425 [TBL] [Abstract][Full Text] [Related]
17. Polymer-drug conjugates for combination anticancer therapy: investigating the mechanism of action. Pasut G; Greco F; Mero A; Mendichi R; Fante C; Green RJ; Veronese FM J Med Chem; 2009 Oct; 52(20):6499-502. PubMed ID: 19764729 [TBL] [Abstract][Full Text] [Related]
18. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Taghdisi SM; Danesh NM; Ramezani M; Lavaee P; Jalalian SH; Robati RY; Abnous K Eur J Pharm Biopharm; 2016 May; 102():152-8. PubMed ID: 26987703 [TBL] [Abstract][Full Text] [Related]
19. Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Yazdian-Robati R; Arab A; Ramezani M; Rafatpanah H; Bahreyni A; Nabavinia MS; Abnous K; Taghdisi SM Drug Dev Ind Pharm; 2019 Apr; 45(4):603-610. PubMed ID: 30633594 [TBL] [Abstract][Full Text] [Related]
20. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. Dai J; Han S; Ju F; Han M; Xu L; Zhang R; Sun Y Artif Cells Nanomed Biotechnol; 2018; 46(sup2):860-873. PubMed ID: 29771149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]