These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31560158)

  • 21. Influence of Binders and Solvents on Stability of Ru/RuO
    Vankova S; Francia C; Amici J; Zeng J; Bodoardo S; Penazzi N; Collins G; Geaney H; O'Dwyer C
    ChemSusChem; 2017 Feb; 10(3):575-586. PubMed ID: 27899004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Operando probing of the surface chemistry during the Haber-Bosch process.
    Goodwin CM; Lömker P; Degerman D; Davies B; Shipilin M; Garcia-Martinez F; Koroidov S; Katja Mathiesen J; Rameshan R; Rodrigues GLS; Schlueter C; Amann P; Nilsson A
    Nature; 2024 Jan; 625(7994):282-286. PubMed ID: 38200297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into Enhanced Microwave Heating for Ammonia Synthesis: Effects of CNT on the Cs-Ru/CeO
    Araia A; Wang Y; Jiang C; Brown S; Caiola A; Robinson B; Li W; Hu J
    ACS Appl Mater Interfaces; 2023 May; 15(20):24296-24305. PubMed ID: 37167454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition.
    McCullough K; Chiang PH; Jimenez JD; Lauterbach JA
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Li-intercalated CeO
    Gao Z; Mu X; Xiong Q; Li L
    Dalton Trans; 2023 Oct; 52(42):15334-15337. PubMed ID: 37387621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring widely used ammonia synthesis catalysts for H and N poisoning resistance.
    Ghuman KK; Tozaki K; Sadakiyo M; Kitano S; Oyabe T; Yamauchi M
    Phys Chem Chem Phys; 2019 Feb; 21(9):5117-5122. PubMed ID: 30766991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic Behavior of K-doped Fe/MgO Catalysts for Ammonia Synthesis Under Mild Reaction Conditions.
    Era K; Sato K; Miyahara SI; Naito T; De Silva K; Akrami S; Yamada H; Toriyama T; Yamamoto T; Murakami Y; Aika KI; Inazu K; Nagaoka K
    ChemSusChem; 2023 Nov; 16(22):e202300942. PubMed ID: 37877342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition.
    Fang H; Wu S; Ayvali T; Zheng J; Fellowes J; Ho PL; Leung KC; Large A; Held G; Kato R; Suenaga K; Reyes YIA; Thang HV; Chen HT; Tsang SCE
    Nat Commun; 2023 Feb; 14(1):647. PubMed ID: 36746965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen Production from Aqueous Solutions of Urea with Ruthenium-based Catalysts.
    Furukawa S; Suzuki R; Ochi K; Yashima T; Komatsu T
    ChemSusChem; 2015 Jun; 8(12):2028-30. PubMed ID: 25891973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-derived fixation of dinitrogen into ammonia at ambient condition with water on ruthenium/coal-based carbon nanosheets.
    Awati A; Maimaiti H; Wang S; Xu B
    Sci Total Environ; 2019 Dec; 695():133865. PubMed ID: 31421334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption States of N
    Rivera Rocabado DS; Noguchi TG; Hayashi S; Maeda N; Yamauchi M; Ishimoto T
    ACS Nano; 2021 Dec; 15(12):20079-20086. PubMed ID: 34860010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis.
    Kitano M; Inoue Y; Sasase M; Kishida K; Kobayashi Y; Nishiyama K; Tada T; Kawamura S; Yokoyama T; Hara M; Hosono H
    Angew Chem Int Ed Engl; 2018 Mar; 57(10):2648-2652. PubMed ID: 29356337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Pore Confinement of NaNH
    Chang F; Wu H; Pluijm RV; Guo J; Ngene P; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(35):21487-21496. PubMed ID: 31523341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Atom Catalysis Using Chromium Embedded in Divacant Graphene for Conversion of Dinitrogen to Ammonia.
    Riyaz M; Goel N
    Chemphyschem; 2019 Aug; 20(15):1954-1959. PubMed ID: 31157500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage.
    Bandaru S; English NJ; Phillips AD; MacElroy JM
    J Comput Chem; 2014 May; 35(12):891-903. PubMed ID: 24497325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of the ammonia synthesis activity of a Cs- or Ba-promoted ruthenium catalyst supported on barium niobate.
    Chen M; Zhang Q; You Z
    RSC Adv; 2024 Jun; 14(26):18459-18466. PubMed ID: 38860248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly effective catalysis of the double-icosahedral Ru(19) cluster for dinitrogen dissociation - a first-principles investigation.
    Yeh CH; Lin YC; Ho JJ
    Phys Chem Chem Phys; 2014 Apr; 16(16):7394-400. PubMed ID: 24622677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-dissociative activation of chemisorbed dinitrogen on Ni{110} by co-adsorbed lithium.
    Liu T; Temprano I; Jenkins SJ; King DA
    J Chem Phys; 2013 Nov; 139(18):184708. PubMed ID: 24320292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.