These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31560158)
61. Alcohol Synthesis from CO Heyl D; Kreyenschulte C; Kondratenko VA; Bentrup U; Kondratenko EV; Brückner A ChemSusChem; 2019 Feb; 12(3):651-660. PubMed ID: 30451389 [TBL] [Abstract][Full Text] [Related]
62. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. Sato K; Imamura K; Kawano Y; Miyahara SI; Yamamoto T; Matsumura S; Nagaoka K Chem Sci; 2017 Jan; 8(1):674-679. PubMed ID: 28451216 [TBL] [Abstract][Full Text] [Related]
63. Technical Challenges and Prospects in Sustainable Plasma Catalytic Ammonia Production from Methane and Nitrogen. M Nguyen H; Omidkar A; Song H Chempluschem; 2023 Jul; 88(7):e202300129. PubMed ID: 37160701 [TBL] [Abstract][Full Text] [Related]
64. Water Durable Electride Y₅Si₃: Electronic Structure and Catalytic Activity for Ammonia Synthesis. Lu Y; Li J; Tada T; Toda Y; Ueda S; Yokoyama T; Kitano M; Hosono H J Am Chem Soc; 2016 Mar; 138(12):3970-3. PubMed ID: 26972257 [TBL] [Abstract][Full Text] [Related]
65. Boosted Activity of Cobalt Catalysts for Ammonia Synthesis with BaAl Jiang Y; Takashima R; Nakao T; Miyazaki M; Lu Y; Sasase M; Niwa Y; Abe H; Kitano M; Hosono H J Am Chem Soc; 2023 May; 145(19):10669-10680. PubMed ID: 37129031 [TBL] [Abstract][Full Text] [Related]
66. Computational Mechanistic Study of Electro-Oxidation of Ammonia to N Najafian A; Cundari TR J Phys Chem A; 2019 Sep; 123(37):7973-7982. PubMed ID: 31454245 [TBL] [Abstract][Full Text] [Related]
67. Dissociative and Associative Concerted Mechanism for Ammonia Synthesis over Co-Based Catalyst. Ye TN; Park SW; Lu Y; Li J; Wu J; Sasase M; Kitano M; Hosono H J Am Chem Soc; 2021 Aug; 143(32):12857-12866. PubMed ID: 34369762 [TBL] [Abstract][Full Text] [Related]
68. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes. Cao N; Su J; Hong X; Luo W; Cheng G Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206 [TBL] [Abstract][Full Text] [Related]
69. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis. Yue C; Qiu L; Trudeau M; Antonelli D Inorg Chem; 2007 Jun; 46(12):5084-92. PubMed ID: 17497850 [TBL] [Abstract][Full Text] [Related]
70. Ammonia Synthesis via an Associative Mechanism on Alkaline Earth Metal Sites of Ca Cao Y; Toshcheva E; Almaksoud W; Ahmad R; Tsumori T; Rai R; Tang Y; Cavallo L; Kageyama H; Kobayashi Y ChemSusChem; 2023 Nov; 16(22):e202300234. PubMed ID: 37114507 [TBL] [Abstract][Full Text] [Related]
71. Bottom-Up Design of a Copper-Ruthenium Nanoparticulate Catalyst for Low-Temperature Ammonia Oxidation. Chakraborty D; Damsgaard CD; Silva H; Conradsen C; Olsen JL; Carvalho HWP; Mutz B; Bligaard T; Hoffmann MJ; Grunwaldt JD; Studt F; Chorkendorff I Angew Chem Int Ed Engl; 2017 Jul; 56(30):8711-8715. PubMed ID: 28510358 [TBL] [Abstract][Full Text] [Related]
72. Spectroscopic Characterization of the Synergistic Mechanism of Ruthenium-Lithium Hydrides for Dinitrogen Cleavage. Zhang J; Li G; Guo J; Fan H; Chen P; Jiang L; Xie H J Phys Chem Lett; 2022 May; 13(17):3937-3941. PubMed ID: 35475625 [TBL] [Abstract][Full Text] [Related]
73. Ambient Carbon-Neutral Ammonia Generation via a Cyclic Microwave Plasma Process. Brown S; Ahmat Ibrahim S; Robinson BR; Caiola A; Tiwari S; Wang Y; Bhattacharyya D; Che F; Hu J ACS Appl Mater Interfaces; 2023 May; 15(19):23255-23264. PubMed ID: 37134186 [TBL] [Abstract][Full Text] [Related]
74. Exsolution of Ru Nanoparticles on BaCe Kim H; Jan A; Kwon DH; Ji HI; Yoon KJ; Lee JH; Jun Y; Son JW; Yang S Small; 2023 Feb; 19(6):e2205424. PubMed ID: 36464649 [TBL] [Abstract][Full Text] [Related]
75. Active nitrogen sites on nitrogen doped carbon for highly efficient associative ammonia decomposition. Ye D; Leung KC; Niu W; Duan M; Li J; Ho PL; Szalay D; Wu TS; Soo YL; Wu S; Tsang SCE iScience; 2024 Aug; 27(8):110571. PubMed ID: 39184443 [TBL] [Abstract][Full Text] [Related]
76. Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO Cored J; García-Ortiz A; Iborra S; Climent MJ; Liu L; Chuang CH; Chan TS; Escudero C; Concepción P; Corma A J Am Chem Soc; 2019 Dec; 141(49):19304-19311. PubMed ID: 31774282 [TBL] [Abstract][Full Text] [Related]
77. Counterion Dependence of Dinitrogen Activation and Functionalization by a Diniobium Hydride Anion. Suzuki S; Ishida Y; Kameo H; Sakaki S; Kawaguchi H Angew Chem Int Ed Engl; 2020 Aug; 59(32):13444-13450. PubMed ID: 32352196 [TBL] [Abstract][Full Text] [Related]
78. Splitting of Hydrogen Atoms into Proton-Electron Pairs at BaO-Ru Interfaces for Promoting Ammonia Synthesis under Mild Conditions. Baik Y; Kwen M; Lee K; Chi S; Lee S; Cho K; Kim H; Choi M J Am Chem Soc; 2023 May; 145(20):11364-11374. PubMed ID: 37183414 [TBL] [Abstract][Full Text] [Related]
79. A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. Zeinalipour-Yazdi CD; Hargreaves JSJ; Laassiri S; Catlow CRA R Soc Open Sci; 2021 Nov; 8(11):210952. PubMed ID: 34737878 [TBL] [Abstract][Full Text] [Related]
80. DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures. Tanaka H; Mori H; Seino H; Hidai M; Mizobe Y; Yoshizawa K J Am Chem Soc; 2008 Jul; 130(28):9037-47. PubMed ID: 18558678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]