These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 3156035)
21. Effects of mitogens on ornithine decarboxylase activity and messenger RNA levels in normal and protein kinase C-deficient NIH-3T3 fibroblasts. Hovis JG; Stumpo DJ; Halsey DL; Blackshear PJ J Biol Chem; 1986 Aug; 261(22):10380-6. PubMed ID: 3733713 [TBL] [Abstract][Full Text] [Related]
22. Polyamine-dependent growth and calmodulin-regulated induction of ornithine decarboxylase. Ginty DD; Seidel ER Am J Physiol; 1989 Feb; 256(2 Pt 1):G342-8. PubMed ID: 2493197 [TBL] [Abstract][Full Text] [Related]
23. Induction of ornithine decarboxylase by treatment with phospholipase C. Kuramoto A; Otani S; Matsui-Yuasa I; Morisawa S Osaka City Med J; 1985 Aug; 31(1):23-40. PubMed ID: 4094755 [No Abstract] [Full Text] [Related]
24. Effects of phorbol esters on basal epidermal cells derived from ear skin of adult guniea pigs. Delescluse C; Fürstenberger G; Marks F; Pruniéras M Cancer Res; 1982 May; 42(5):1975-9. PubMed ID: 6950814 [TBL] [Abstract][Full Text] [Related]
25. Effects of retinoic acid and juvenile hormone on the induction of ornithine decarboxylase activity by 12-O-tetradecanoylphorbol-13-acetate. Kensler TW; Verma AK; Boutwell RK; Mueller GC Cancer Res; 1978 Sep; 38(9):2896-9. PubMed ID: 679197 [TBL] [Abstract][Full Text] [Related]
26. Phorbol esters stimulate DNA synthesis and ornithine decarboxylase activity in mouse epidermal cell cultures. Yuspa SH; Lichti U; Ben T; Patterson E; Hennings H; Slaga TJ; Colburn N; Kelsey W Nature; 1976 Jul; 262(5567):402-4. PubMed ID: 958393 [No Abstract] [Full Text] [Related]
27. Potentiation of PGE1-induced increase in cyclic AMP by chemotactic peptide and Ca2+ ionophore through calmodulin-dependent processes. Ishitoya J; Takenawa T J Immunol; 1987 Feb; 138(4):1201-7. PubMed ID: 2433345 [TBL] [Abstract][Full Text] [Related]
28. Parathyroid hormone-induced ornithine decarboxylase activity in fetal rat osteoblasts. Van Leeuwen JP; Bos MP; Herrmann-Erlee MP J Bone Miner Res; 1989 Aug; 4(4):485-92. PubMed ID: 2554685 [TBL] [Abstract][Full Text] [Related]
29. Dissociation of increases in levels of 3':5'-cyclic AMP and 3':5'-cyclic GMP from induction of ornithine decarboxylase by the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate in mouse epidermis in vivo. Mufson RA; Astrup EG; Simsiman RC; Boutwell RK Proc Natl Acad Sci U S A; 1977 Feb; 74(2):657-61. PubMed ID: 191821 [TBL] [Abstract][Full Text] [Related]
30. Calcium/phosphatidylserine/diacylglycerol-dependent protein phosphorylation in the Aplysia nervous system. DeRiemer SA; Greengard P; Kaczmarek LK J Neurosci; 1985 Oct; 5(10):2672-6. PubMed ID: 4045549 [TBL] [Abstract][Full Text] [Related]
31. Relationship between ornithine decarboxylase-inducing activity and configuration at C-4 in phorbol ester derivatives. Fujiki H; Mori M; Sugimura T; Hirota M; Ohigashi H; Koshimizu K J Cancer Res Clin Oncol; 1980; 98(1):9-13. PubMed ID: 7451556 [TBL] [Abstract][Full Text] [Related]
32. Action of retinoic acid on the diacylglycerol-induced ornithine decarboxylase activity, reduction in EGF binding and protein kinase C activation in rat tracheal epithelial 2C5 cells. Jetten AM; Shirley JE Exp Cell Res; 1986 Oct; 166(2):519-25. PubMed ID: 3017743 [TBL] [Abstract][Full Text] [Related]
33. Steroidogenic properties of phorbol ester and a Ca2+ ionophore in bovine adrenocortical cell suspensions. Culty M; Vilgrain I; Chambaz EM Biochem Biophys Res Commun; 1984 Jun; 121(2):499-506. PubMed ID: 6233977 [TBL] [Abstract][Full Text] [Related]
34. B cell activation. VII. Independent and synergistic effects of mobilized calcium and diacylglycerol on membrane potential and I-A expression. Ransom JT; Cambier JC J Immunol; 1986 Jan; 136(1):66-72. PubMed ID: 3079612 [TBL] [Abstract][Full Text] [Related]
35. Protein kinase C activators and calcium-mobilizing agents synergistically increase GH, LH, and TSH secretion from anterior pituitary cells. Judd AM; Koike K; Yasumoto T; MacLeod RM Neuroendocrinology; 1986; 42(3):197-202. PubMed ID: 3081827 [TBL] [Abstract][Full Text] [Related]
36. Synergistic effects of cyclic AMP and Ca2+ ionophore A23187 on de novo synthesis of histidine decarboxylase in mastocytoma P-815 cells. Miyazaki T; Ohgoh M; Ohmori E; Yamamoto J; Emoto S; Yatsunami K; Ichikawa A Biochim Biophys Acta; 1992 Jan; 1133(2):179-86. PubMed ID: 1310051 [TBL] [Abstract][Full Text] [Related]
37. Antagonists of calcium fluxes and calmodulin block activation of the p21-activated protein kinases in neutrophils. Lian JP; Crossley L; Zhan Q; Huang R; Coffer P; Toker A; Robinson D; Badwey JA J Immunol; 2001 Feb; 166(4):2643-50. PubMed ID: 11160327 [TBL] [Abstract][Full Text] [Related]
38. Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems. Wang JK; Walaas SI; Greengard P J Neurosci; 1988 Jan; 8(1):281-8. PubMed ID: 3276830 [TBL] [Abstract][Full Text] [Related]
39. Two mechanisms of spermidine/spermine N1-acetyltransferase-induction. Matsui-Yuasa I; Otani S; Yukioka K; Goto H; Morisawa S Arch Biochem Biophys; 1989 Jan; 268(1):209-14. PubMed ID: 2463788 [TBL] [Abstract][Full Text] [Related]
40. Clearer demonstration of calcium/calmodulin-dependent events in synaptosomes by use of the differential effects of two calmodulin antagonists, N-(aminohexyl)-5-chloro-1-naphthalenesulfonamide and N-(6-aminohexyl)-1-naphthalenesulfonamide. Imai S; Onozuka M Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 91(2):535-40. PubMed ID: 2905967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]