These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31560573)

  • 21. Evaluating Non-operative Robotic Skills in Colorectal Surgical Training.
    AlJamal YN; Baloul MS; Mathis KL; Dozois EJ; Kelley SR
    J Surg Res; 2021 Apr; 260():391-398. PubMed ID: 33261853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eye-tracking in surgery: a systematic review.
    Bapna T; Valles J; Leng S; Pacilli M; Nataraja RM
    ANZ J Surg; 2023 Nov; 93(11):2600-2608. PubMed ID: 37668263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eye Tracking and Motion Data Predict Endoscopic Sinus Surgery Skill.
    Berges AJ; Vedula SS; Chara A; Hager GD; Ishii M; Malpani A
    Laryngoscope; 2023 Mar; 133(3):500-505. PubMed ID: 35357011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Objective assessment in residency-based training for transoral robotic surgery.
    Curry M; Malpani A; Li R; Tantillo T; Jog A; Blanco R; Ha PK; Califano J; Kumar R; Richmon J
    Laryngoscope; 2012 Oct; 122(10):2184-92. PubMed ID: 22915265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Adaptive Human-Robotic Interaction Architecture for Augmenting Surgery Performance Using Real-Time Workload Sensing-Demonstration of a Semi-autonomous Suction Tool.
    Yang J; Barragan JA; Farrow JM; Sundaram CP; Wachs JP; Yu D
    Hum Factors; 2024 Apr; 66(4):1081-1102. PubMed ID: 36367971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eye-Tracking Indicators of Workload in Surgery: A Systematic Review.
    Tolvanen O; Elomaa AP; Itkonen M; Vrzakova H; Bednarik R; Huotarinen A
    J Invest Surg; 2022 Jun; 35(6):1340-1349. PubMed ID: 35038963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive Human-Robotic Interaction for  Robotic-assisted Surgical Settings.
    Yang J; Layadi IC; Wachs JP; Yu D
    Mil Med; 2023 Nov; 188(Suppl 6):480-487. PubMed ID: 37948270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic simulation: validation and qualitative assessment of a general surgery resident training curriculum.
    Turbati MS; Goldblatt MI; Gould JC; Higgins RM
    Surg Endosc; 2023 Mar; 37(3):2304-2315. PubMed ID: 36002680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Operative performance outcomes of a simulator-based robotic surgical skills curriculum.
    Gerull W; Zihni A; Awad M
    Surg Endosc; 2020 Oct; 34(10):4543-4548. PubMed ID: 31732857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An eye-tracking based robotic scrub nurse: proof of concept.
    Ezzat A; Kogkas A; Holt J; Thakkar R; Darzi A; Mylonas G
    Surg Endosc; 2021 Sep; 35(9):5381-5391. PubMed ID: 34101012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laparoscopic and robotic skills are transferable in a simulation setting: a randomized controlled trial.
    Thomaier L; Orlando M; Abernethy M; Paka C; Chen CCG
    Surg Endosc; 2017 Aug; 31(8):3279-3285. PubMed ID: 27924388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. COLET: A dataset for COgnitive workLoad estimation based on eye-tracking.
    Ktistakis E; Skaramagkas V; Manousos D; Tachos NS; Tripoliti E; Fotiadis DI; Tsiknakis M
    Comput Methods Programs Biomed; 2022 Sep; 224():106989. PubMed ID: 35870415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying Workload and Stress in Intensive Care Unit Nurses: Preliminary Evaluation Using Continuous Eye-Tracking.
    Ahmadi N; Sasangohar F; Yang J; Yu D; Danesh V; Klahn S; Masud F
    Hum Factors; 2024 Mar; 66(3):714-728. PubMed ID: 35511206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The robot doesn't lie: real-life validation of robotic performance metrics.
    Quinn KM; Chen X; Runge LT; Pieper H; Renton D; Meara M; Collins C; Griffiths C; Husain S
    Surg Endosc; 2023 Jul; 37(7):5547-5552. PubMed ID: 36266482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current practises and the future of robotic surgical training.
    Sinha A; West A; Vasdev N; Sooriakumaran P; Rane A; Dasgupta P; McKirdy M
    Surgeon; 2023 Oct; 21(5):314-322. PubMed ID: 36932015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neurotechnological aid for semi-autonomous suction in robotic-assisted surgery.
    Barragan JA; Yang J; Yu D; Wachs JP
    Sci Rep; 2022 Mar; 12(1):4504. PubMed ID: 35296714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cognitive ergonomics and robotic surgery.
    Wong SW; Crowe P
    J Robot Surg; 2024 Mar; 18(1):110. PubMed ID: 38441814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residents perform better technically, have less stress and workload, and prefer robotic to laparoscopic technique during inanimate simulation.
    Choi SH; Kuchta K; Rojas A; Mehdi SA; Ramirez Barriga M; Hays S; Talamonti MS; Hogg ME
    Surg Endosc; 2023 Sep; 37(9):7230-7237. PubMed ID: 37395804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in gaze behaviour of expert and junior surgeons performing open inguinal hernia repair.
    Tien T; Pucher PH; Sodergren MH; Sriskandarajah K; Yang GZ; Darzi A
    Surg Endosc; 2015 Feb; 29(2):405-13. PubMed ID: 25125094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mental workload and stress perceived by novice operators in the laparoscopic and robotic minimally invasive surgical interfaces.
    Klein MI; Warm JS; Riley MA; Matthews G; Doarn C; Donovan JF; Gaitonde K
    J Endourol; 2012 Aug; 26(8):1089-94. PubMed ID: 22429084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.