These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31560699)
1. Synergy of the flow behaviour and disperse phase of cellulose nanoparticles in enhancing oil recovery at reservoir condition. Agi A; Junin R; Arsad A; Abbas A; Gbadamosi A; Azli NB; Oseh J PLoS One; 2019; 14(9):e0220778. PubMed ID: 31560699 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound-assisted weak-acid hydrolysis of crystalline starch nanoparticles for chemical enhanced oil recovery. Agi A; Junin R; Arsad A; Abbas A; Gbadamosi A; Azli NB; Oseh J Int J Biol Macromol; 2020 Apr; 148():1251-1271. PubMed ID: 31760018 [TBL] [Abstract][Full Text] [Related]
3. Experimental Study on the Application of Cellulosic Biopolymer for Enhanced Oil Recovery in Carbonate Cores under Harsh Conditions. Gbadamosi A; Zhou X; Murtaza M; Kamal MS; Patil S; Al Shehri D; Barri A Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365615 [TBL] [Abstract][Full Text] [Related]
4. Development of highly stable colloidal dispersions of gelled-oil nanoparticles loaded with cuminaldehyde. Ghiasi F; Eskandari MH; Golmakani MT; Hosseini SMH J Colloid Interface Sci; 2019 Apr; 541():65-74. PubMed ID: 30682594 [TBL] [Abstract][Full Text] [Related]
5. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR). Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897 [TBL] [Abstract][Full Text] [Related]
6. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. Carrillo CA; Nypelö TE; Rojas OJ J Colloid Interface Sci; 2015 May; 445():166-173. PubMed ID: 25617611 [TBL] [Abstract][Full Text] [Related]
7. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Han J; Zhou C; Wu Y; Liu F; Wu Q Biomacromolecules; 2013 May; 14(5):1529-40. PubMed ID: 23544667 [TBL] [Abstract][Full Text] [Related]
8. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers. Carrillo CA; Nypelö T; Rojas OJ Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673 [TBL] [Abstract][Full Text] [Related]
10. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Kalashnikova I; Bizot H; Cathala B; Capron I Biomacromolecules; 2012 Jan; 13(1):267-75. PubMed ID: 22126590 [TBL] [Abstract][Full Text] [Related]
11. Laboratory Investigation of Nanofluid-Assisted Polymer Flooding in Carbonate Reservoirs. Ulasbek K; Hashmet MR; Pourafshary P; Muneer R Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500880 [TBL] [Abstract][Full Text] [Related]
12. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR. Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280 [TBL] [Abstract][Full Text] [Related]
13. Role of Phase-Dependent Dielectric Properties of Alumina Nanoparticles in Electromagnetic-Assisted Enhanced Oil Recovery. Adil M; Lee KC; Zaid HM; Manaka T Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036153 [TBL] [Abstract][Full Text] [Related]
14. Sunflower oil cake-derived cellulose nanocrystals: Extraction, physico-chemical characteristics and potential application. Kassab Z; El Achaby M; Tamraoui Y; Sehaqui H; Bouhfid R; Qaiss AEK Int J Biol Macromol; 2019 Sep; 136():241-252. PubMed ID: 31195048 [TBL] [Abstract][Full Text] [Related]
15. Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries. Tang Z; Huang R; Mei C; Sun X; Zhou D; Zhang X; Wu Q Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658486 [TBL] [Abstract][Full Text] [Related]
16. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery. Couto MR; Gudiña EJ; Ferreira D; Teixeira JA; Rodrigues LR N Biotechnol; 2019 Mar; 49():144-150. PubMed ID: 30445186 [TBL] [Abstract][Full Text] [Related]
17. Effects of ultrasonic conditions on the interfacial property and emulsifying property of cellulose nanoparticles from ginkgo seed shells. Ni Y; Li J; Fan L Ultrason Sonochem; 2021 Jan; 70():105335. PubMed ID: 32942165 [TBL] [Abstract][Full Text] [Related]
18. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system. Adil M; Mohd Zaid H; Raza F; Agam MA PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369 [TBL] [Abstract][Full Text] [Related]
19. Influence of nanocellulose on in vitro digestion of whey protein isolate. Liu L; Kong F Carbohydr Polym; 2019 Apr; 210():399-411. PubMed ID: 30732777 [TBL] [Abstract][Full Text] [Related]
20. Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Li Z; Wu H; Yang M; Xu D; Chen J; Feng H; Lu Y; Zhang L; Yu Y; Kang W Carbohydr Polym; 2018 Feb; 181():224-233. PubMed ID: 29253967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]