These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 31560882)
41. Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes. Athanassiou CG; Kavallieratos NG; Menti H; Karanastasi E J Econ Entomol; 2010 Jun; 103(3):977-84. PubMed ID: 20568646 [TBL] [Abstract][Full Text] [Related]
42. Impact of the host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions. Perez EE; Lewis EE; Shapiro-Ilan DI J Invertebr Pathol; 2003 Feb; 82(2):111-8. PubMed ID: 12623311 [TBL] [Abstract][Full Text] [Related]
43. Effects of host desiccation on development, survival, and infectivity of entomopathogenic nematode Steinernema carpocapsae. Serwe-Rodriguez J; Sonnenberg K; Appleman B; Bornstein-Forst S J Invertebr Pathol; 2004 Mar; 85(3):175-81. PubMed ID: 15109900 [TBL] [Abstract][Full Text] [Related]
44. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue. Lu D; Sepulveda C; Dillman AR PLoS One; 2017; 12(1):e0169410. PubMed ID: 28046065 [TBL] [Abstract][Full Text] [Related]
45. Neutral lipids and the assessment of infectivity in entomopathogenic nematodes: observations on four Steinernema species. Patel MN; Stolinski M; Wright DJ Parasitology; 1997 May; 114 ( Pt 5)():489-96. PubMed ID: 9149420 [TBL] [Abstract][Full Text] [Related]
46. Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). Hazir S; Stock SP; Kaya HK; Koppenhöfer AM; Keskin N J Invertebr Pathol; 2001 May; 77(4):243-50. PubMed ID: 11437527 [TBL] [Abstract][Full Text] [Related]
47. Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization. Martens EC; Russell FM; Goodrich-Blair H Mol Microbiol; 2005 Oct; 58(1):28-45. PubMed ID: 16164547 [TBL] [Abstract][Full Text] [Related]
48. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Sicard M; Brugirard-Ricaud K; Pagès S; Lanois A; Boemare NE; Brehélin M; Givaudan A Appl Environ Microbiol; 2004 Nov; 70(11):6473-80. PubMed ID: 15528508 [TBL] [Abstract][Full Text] [Related]
49. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Addis T; Teshome A; Strauch O; Ehlers RU Appl Microbiol Biotechnol; 2016 May; 100(10):4357-66. PubMed ID: 26701359 [TBL] [Abstract][Full Text] [Related]
50. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Balasubramanian N; Nascimento G; Ferreira R; Martinez M; Simões N Gene; 2012 Jun; 500(2):164-71. PubMed ID: 22503896 [TBL] [Abstract][Full Text] [Related]
51. Comparison of the Galleria baiting technique and a direct extraction method for recovering Steinernema (Nematoda: Rhabditida) infective-stage juveniles from soil. Sturhan D; Mrácek Z Folia Parasitol (Praha); 2000; 47(4):315-8. PubMed ID: 11151957 [TBL] [Abstract][Full Text] [Related]
52. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Martens EC; Goodrich-Blair H Cell Microbiol; 2005 Dec; 7(12):1723-35. PubMed ID: 16309459 [TBL] [Abstract][Full Text] [Related]
53. First Report and Comparative Study of Bhat AH; Istkhar ; Chaubey AK; Půža V; San-Blas E J Nematol; 2017 Mar; 49(1):92-102. PubMed ID: 28512381 [TBL] [Abstract][Full Text] [Related]
55. Nutritive significance of crystalline inclusion proteins of Photorhabdus luminescens in Steinernema nematodes. You J; Liang S; Cao L; Liu X; Han R FEMS Microbiol Ecol; 2006 Feb; 55(2):178-85. PubMed ID: 16420626 [TBL] [Abstract][Full Text] [Related]
56. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Sicard M; Ferdy JB; Pagès S; Le Brun N; Godelle B; Boemare N; Moulia C J Evol Biol; 2004 Sep; 17(5):985-93. PubMed ID: 15312071 [TBL] [Abstract][Full Text] [Related]
57. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Han R; Ehlers RU J Invertebr Pathol; 2000 Jan; 75(1):55-8. PubMed ID: 10631058 [TBL] [Abstract][Full Text] [Related]
58. Using deuterium as an isotopic tracer to study the energy metabolism of infective juveniles of Steinernema carpocapsae under aerobic conditions. Qiu L; Lacey MJ; Bedding RA Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):279-88. PubMed ID: 11126758 [TBL] [Abstract][Full Text] [Related]
59. Effect of inoculum age and physical parameters on in vitro culture of the entomopathogenic nematode Steinernema feltiae. Leite LG; Shapiro-Ilan DI; Hazir S; Jackson MA J Helminthol; 2017 Nov; 91(6):686-695. PubMed ID: 27866481 [TBL] [Abstract][Full Text] [Related]
60. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]