BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31560956)

  • 1. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles.
    Garcia-Mouton C; Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2019 Nov; 144():230-243. PubMed ID: 31560956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barrier or carrier? Pulmonary surfactant and drug delivery.
    Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):117-27. PubMed ID: 25709061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of pulmonary surfactant on nanoparticulate drug delivery systems.
    Schleh C; Rothen-Rutishauser B; Kreyling WG
    Eur J Pharm Biopharm; 2011 Apr; 77(3):350-2. PubMed ID: 21195761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications.
    Hidalgo A; Cruz A; Pérez-Gil J
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt B):1740-1748. PubMed ID: 28450046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can nanotechnology hit the spot in aerosol-based drug delivery for lung disorders?
    Joshi N
    Ther Deliv; 2018 Mar; 9(4):233-236. PubMed ID: 29495926
    [No Abstract]   [Full Text] [Related]  

  • 7. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.
    Kadoya C; Lee BW; Ogami A; Oyabu T; Nishi K; Yamamoto M; Todoroki M; Morimoto Y; Tanaka I; Myojo T
    Nanotoxicology; 2016; 10(2):194-203. PubMed ID: 25950198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants.
    Liu Q; Guan J; Song R; Zhang X; Mao S
    Acta Biomater; 2022 Mar; 140():76-87. PubMed ID: 34843949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.
    Valle RP; Wu T; Zuo YY
    ACS Nano; 2015 May; 9(5):5413-21. PubMed ID: 25929264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nanoparticles on the mechanical functioning of the lung.
    Arick DQ; Choi YH; Kim HC; Won YY
    Adv Colloid Interface Sci; 2015 Nov; 225():218-28. PubMed ID: 26494653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins.
    Guagliardo R; Pérez-Gil J; De Smedt S; Raemdonck K
    J Control Release; 2018 Dec; 291():116-126. PubMed ID: 30321577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction Between Hydrophobic Au Nanoparticles and Pulmonary Surfactant (DPPC) Monolayers.
    Zhang K; Liu L; Bai T; Guo Z
    J Biomed Nanotechnol; 2018 Mar; 14(3):526-535. PubMed ID: 29663924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers.
    Gravel-Tatta L; DeWolf C; Badia A
    Langmuir; 2021 Oct; 37(42):12365-12376. PubMed ID: 34644076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of nano carbon particles and anthracene with pulmonary surfactant: The potential hazards of inhaled nanoparticles.
    Zhao Q; Li Y; Chai X; Zhang L; Xu L; Huang J; Ning P; Tian S
    Chemosphere; 2019 Jan; 215():746-752. PubMed ID: 30352372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer.
    Sachan AK; Galla HJ
    Small; 2014 Mar; 10(6):1069-75. PubMed ID: 24339125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of clay nanoparticles on model lung surfactant: a potential marker of hazard from nanoaerosol inhalation.
    Kondej D; Sosnowski TR
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4660-9. PubMed ID: 26527341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-lipid interactions and surface activity in the pulmonary surfactant system.
    Serrano AG; Pérez-Gil J
    Chem Phys Lipids; 2006 Jun; 141(1-2):105-18. PubMed ID: 16600200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticles in the lung and their protein corona: the few proteins that count.
    Whitwell H; Mackay RM; Elgy C; Morgan C; Griffiths M; Clark H; Skipp P; Madsen J
    Nanotoxicology; 2016 Nov; 10(9):1385-94. PubMed ID: 27465202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ions on the interactions of glass nanoparticles with monolayer lung surfactant: applications for the study of inhaled airborne wear particles.
    Munteanu B; Berthier Y; Rieu JP; Sfarghiu AM
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():264-5. PubMed ID: 23923935
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
    Wohlleben W; Driessen MD; Raesch S; Schaefer UF; Schulze C; Vacano Bv; Vennemann A; Wiemann M; Ruge CA; Platsch H; Mues S; Ossig R; Tomm JM; Schnekenburger J; Kuhlbusch TA; Luch A; Lehr CM; Haase A
    Nanotoxicology; 2016 Sep; 10(7):970-80. PubMed ID: 26984182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.