These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 31561100)
1. Deep learning based retinal OCT segmentation. Pekala M; Joshi N; Liu TYA; Bressler NM; DeBuc DC; Burlina P Comput Biol Med; 2019 Nov; 114():103445. PubMed ID: 31561100 [TBL] [Abstract][Full Text] [Related]
2. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
3. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
4. Automated Layer Segmentation of Retinal Optical Coherence Tomography Images Using a Deep Feature Enhanced Structured Random Forests Classifier. Liu X; Fu T; Pan Z; Liu D; Hu W; Liu J; Zhang K IEEE J Biomed Health Inform; 2019 Jul; 23(4):1404-1416. PubMed ID: 30010602 [TBL] [Abstract][Full Text] [Related]
5. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
6. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related]
7. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Yu C; Xie S; Niu S; Ji Z; Fan W; Yuan S; Liu Q; Chen Q Med Phys; 2019 Oct; 46(10):4502-4519. PubMed ID: 31315159 [TBL] [Abstract][Full Text] [Related]
8. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images. Lin M; Bao G; Sang X; Wu Y Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040 [TBL] [Abstract][Full Text] [Related]
9. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms. Rashno A; Koozekanani DD; Drayna PM; Nazari B; Sadri S; Rabbani H; Parhi KK IEEE Trans Biomed Eng; 2018 May; 65(5):989-1001. PubMed ID: 28783619 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455 [TBL] [Abstract][Full Text] [Related]
11. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657 [TBL] [Abstract][Full Text] [Related]
12. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132 [TBL] [Abstract][Full Text] [Related]
13. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. Girish GN; Thakur B; Chowdhury SR; Kothari AR; Rajan J IEEE J Biomed Health Inform; 2019 Jan; 23(1):296-304. PubMed ID: 29994161 [TBL] [Abstract][Full Text] [Related]
15. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844 [TBL] [Abstract][Full Text] [Related]
16. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
17. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning. Kugelman J; Alonso-Caneiro D; Chen Y; Arunachalam S; Huang D; Vallis N; Collins MJ; Chen FK Transl Vis Sci Technol; 2020 Oct; 9(11):12. PubMed ID: 33133774 [TBL] [Abstract][Full Text] [Related]
18. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Predicts OCT Measures of Diabetic Macular Thickening From Color Fundus Photographs. Arcadu F; Benmansour F; Maunz A; Michon J; Haskova Z; McClintock D; Adamis AP; Willis JR; Prunotto M Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):852-857. PubMed ID: 30821810 [TBL] [Abstract][Full Text] [Related]
20. Point based weakly semi-supervised biomarker detection with cross-scale and label assignment in retinal OCT images. Liu X; Zhu X; Zhang Y; Wang M Comput Methods Programs Biomed; 2024 Jun; 251():108229. PubMed ID: 38761413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]