These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31561285)

  • 21. Selective PPARα Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis.
    Murakami K; Sasaki Y; Asahiyama M; Yano W; Takizawa T; Kamiya W; Matsumura Y; Anai M; Osawa T; Fruchart JC; Fruchart-Najib J; Aburatani H; Sakai J; Kodama T; Tanaka T
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac ischemia-reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity.
    Yoshii A; Nagoshi T; Kashiwagi Y; Kimura H; Tanaka Y; Oi Y; Ito K; Yoshino T; Tanaka TD; Yoshimura M
    Cardiovasc Diabetol; 2019 Jul; 18(1):85. PubMed ID: 31262297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of a selective PPARα modulator, sodium-glucose cotransporter 2 inhibitor, and statin on the myocardial morphology of medaka nonalcoholic fatty liver disease model.
    Ohkoshi-Yamada M; Kamimura K; Kimura A; Tanaka Y; Nagayama I; Yakubo S; Abe H; Yokoo T; Sakamaki A; Kamimura H; Terai S
    Biochem Biophys Res Commun; 2022 Oct; 625():116-121. PubMed ID: 35952608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules.
    Hosokawa K; Takata T; Sugihara T; Matono T; Koda M; Kanda T; Taniguchi S; Ida A; Mae Y; Yamamoto M; Iyama T; Fukuda S; Isomoto H
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31888083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by reducing macrophage infiltration and fat accumulation.
    Kuwashiro S; Terai S; Oishi T; Fujisawa K; Matsumoto T; Nishina H; Sakaida I
    Cell Tissue Res; 2011 Apr; 344(1):125-34. PubMed ID: 21327395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders.
    Chen X; Huang L; Cui L; Xiao Z; Xiong X; Chen C
    J Physiol; 2022 Nov; 600(21):4549-4568. PubMed ID: 36048516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review.
    Zelniker TA; Braunwald E
    J Am Coll Cardiol; 2020 Feb; 75(4):422-434. PubMed ID: 32000955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart.
    Li C; Zhang J; Xue M; Li X; Han F; Liu X; Xu L; Lu Y; Cheng Y; Li T; Yu X; Sun B; Chen L
    Cardiovasc Diabetol; 2019 Feb; 18(1):15. PubMed ID: 30710997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells.
    Pirklbauer M; Schupart R; Fuchs L; Staudinger P; Corazza U; Sallaberger S; Leierer J; Mayer G; Schramek H
    Am J Physiol Renal Physiol; 2019 Mar; 316(3):F449-F462. PubMed ID: 30539648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
    Kurtz R; Libby A; Jones BA; Myakala K; Wang X; Lee Y; Knoer G; Lo Cascio JN; McCormack M; Nguyen G; Choos END; Rodriguez O; Rosenberg AZ; Ranjit S; Albanese C; Levi M; Ecelbarger CM; Shepard BD
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Empagliflozin mitigates metabolic dysfunction-associated steatotic liver disease by reducing de novo lipogenesis in a mouse model of lipoatrophic diabetes.
    Smati S; Sotin T; Deniel P; Ducheix S; Joubert M; Arnaud L; Hadjadj S; Cariou B; Le May C; Prieur X
    Diabetes Obes Metab; 2024 Aug; 26(8):3466-3470. PubMed ID: 38699785
    [No Abstract]   [Full Text] [Related]  

  • 32. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction.
    Komiya C; Tsuchiya K; Shiba K; Miyachi Y; Furuke S; Shimazu N; Yamaguchi S; Kanno K; Ogawa Y
    PLoS One; 2016; 11(3):e0151511. PubMed ID: 26977813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.
    Verma S; McMurray JJV
    Diabetologia; 2018 Oct; 61(10):2108-2117. PubMed ID: 30132036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Improvement of the Hepatic Histological Findings in a Patient with Non-alcoholic Steatohepatitis with Type 2 Diabetes after the Administration of the Sodium-glucose Cotransporter 2 Inhibitor Ipragliflozin.
    Takeda A; Irahara A; Nakano A; Takata E; Koketsu Y; Kimata K; Senda E; Yamada H; Ichikawa K; Fujimori T; Sumida Y
    Intern Med; 2017 Oct; 56(20):2739-2744. PubMed ID: 28924123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of Protective Effects of SGLT2 Inhibitors in Cardiovascular Disease and Renal Dysfunction.
    Liu B; Wang Y; Zhang Y; Yan B
    Curr Top Med Chem; 2019; 19(20):1818-1849. PubMed ID: 31456521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level.
    Katsuno K; Fujimori Y; Takemura Y; Hiratochi M; Itoh F; Komatsu Y; Fujikura H; Isaji M
    J Pharmacol Exp Ther; 2007 Jan; 320(1):323-30. PubMed ID: 17050778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin.
    Fu Y; Breljak D; Onishi A; Batz F; Patel R; Huang W; Song P; Freeman B; Mayoux E; Koepsell H; Anzai N; Nigam SK; Sabolic I; Vallon V
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F386-F394. PubMed ID: 29412698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition.
    Capozzi ME; Coch RW; Koech J; Astapova II; Wait JB; Encisco SE; Douros JD; El K; Finan B; Sloop KW; Herman MA; D'Alessio DA; Campbell JE
    Diabetes; 2020 May; 69(5):882-892. PubMed ID: 32005706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beneficial Effect of the SGLT2 Inhibitor Empagliflozin on Glucose Homeostasis and Cardiovascular Parameters in the Cohen Rosenthal Diabetic Hypertensive (CRDH) Rat.
    Younis F; Leor J; Abassi Z; Landa N; Rath L; Hollander K; Naftali-Shani N; Rosenthal T
    J Cardiovasc Pharmacol Ther; 2018 Jul; 23(4):358-371. PubMed ID: 29627992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SGLT2 inhibitors: the future for treatment of type 2 diabetes mellitus and other chronic diseases.
    Wanner C; Marx N
    Diabetologia; 2018 Oct; 61(10):2134-2139. PubMed ID: 30132035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.