BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31561314)

  • 1. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan.
    Bhardwaj P; Biswas GP; Bhunia B
    Chemosphere; 2019 Nov; 235():976-984. PubMed ID: 31561314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of binding mechanism of triclosan towards cancer markers using molecular docking and molecular dynamics.
    Bhardwaj P; Biswas GP; Mahata N; Ghanta S; Bhunia B
    Chemosphere; 2022 Apr; 293():133550. PubMed ID: 34999105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Novel Protein Targets of Prodigiosin for Breast Cancer Using Inverse Virtual Screening Methods.
    Paul T; Bhardwaj P; Mondal A; Bandyopadhyay TK; Mahata N; Bhunia B
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7236-7254. PubMed ID: 36988846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided identification of novel protein targets of bisphenol A.
    Montes-Grajales D; Olivero-Verbel J
    Toxicol Lett; 2013 Oct; 222(3):312-20. PubMed ID: 23973438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of triclosan in the Hershberger and H295R steroidogenesis assays.
    Farmer WT; Louis GW; Buckalew AR; Hallinger DR; Stoker TE
    Toxicol Lett; 2018 Jul; 291():194-199. PubMed ID: 29501854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Effect of Triclosan on the Fetal Hypothalamus: Evidence for Altered Neuropeptide Regulation.
    Rabaglino MB; Chang EI; Richards EM; James MO; Keller-Wood M; Wood CE
    Endocrinology; 2016 Jul; 157(7):2686-97. PubMed ID: 27145008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent.
    Mi C; Teng Y; Wang X; Yu H; Huang Z; Zong W; Zou L
    Ecotoxicol Environ Saf; 2018 May; 153():78-83. PubMed ID: 29407741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Exposure to Triclosan and Semen Quality.
    Zhu W; Zhang H; Tong C; Xie C; Fan G; Zhao S; Yu X; Tian Y; Zhang J
    Int J Environ Res Public Health; 2016 Feb; 13(2):224. PubMed ID: 26901211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors.
    Paul KB; Thompson JT; Simmons SO; Vanden Heuvel JP; Crofton KM
    Toxicol In Vitro; 2013 Oct; 27(7):2049-60. PubMed ID: 23899473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chronic triclosan exposure upon the antimicrobial susceptibility of 40 ex-situ environmental and human isolates.
    Ledder RG; Gilbert P; Willis C; McBain AJ
    J Appl Microbiol; 2006 May; 100(5):1132-40. PubMed ID: 16630014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.
    Lather A; Sharma S; Khatkar A
    Comb Chem High Throughput Screen; 2018; 21(3):182-193. PubMed ID: 29600755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a widespread metabolic pathway within and among phenolic xenobiotics.
    Ashrap P; Zheng G; Wan Y; Li T; Hu W; Li W; Zhang H; Zhang Z; Hu J
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6062-6067. PubMed ID: 28536195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate.
    Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J
    J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening.
    Mo SL; Liu WF; Li CG; Zhou ZW; Luo HB; Chew H; Liang J; Zhou SF
    Curr Pharm Biotechnol; 2012 Jul; 13(9):1640-704. PubMed ID: 22039821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats.
    Feng Y; Zhang P; Zhang Z; Shi J; Jiao Z; Shao B
    PLoS One; 2016; 11(5):e0154758. PubMed ID: 27149376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish.
    Haggard DE; Noyes PD; Waters KM; Tanguay RL
    Toxicol Appl Pharmacol; 2016 Oct; 308():32-45. PubMed ID: 27538710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland.
    Zarate FM; Schulwitz SE; Stevens KJ; Venables BJ
    Chemosphere; 2012 Jul; 88(3):323-9. PubMed ID: 22483729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical simulation of triclosan metabolism and toxicological evaluation.
    Zhu L; Shao Y; Xiao H; Santiago-Schübel B; Meyer-Alert H; Schiwy S; Yin D; Hollert H; Küppers S
    Sci Total Environ; 2018 May; 622-623():1193-1201. PubMed ID: 29890587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.
    Zhang C; Tang B; Wang Q; Lai L
    Proteins; 2014 Oct; 82(10):2472-82. PubMed ID: 24854898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.