BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31561316)

  • 1. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus.
    Feng M; Li H; You S; Zhang J; Lin H; Wang M; Zhou J
    Chemosphere; 2019 Nov; 235():995-1006. PubMed ID: 31561316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium on the cellular characteristics of Pycnoporus sanguineus during their removal and reduction.
    Feng M; Yin H; Peng H; Liu X; Yang P; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2017 Aug; 142():388-398. PubMed ID: 28441625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium.
    Feng M; Yin H; Peng H; Lu G; Liu Z; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt B):1758-1767. PubMed ID: 30061077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus.
    Feng M; Yin H; Peng H; Liu Z; Lu G; Dang Z
    Environ Pollut; 2017 Sep; 228():128-139. PubMed ID: 28528260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of 2,2',4,4'-tetrabromodiphenyl ether by Pycnoporus sanguineus in the presence of copper ions.
    Wang M; Yin H; Peng H; Feng M; Lu G; Dang Z
    J Environ Sci (China); 2019 Sep; 83():133-143. PubMed ID: 31221376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent degradation of tetrabromobisphenol A by Ochrobactrum sp. T under aerobic condition and estrogenic transition during these processes.
    Zu L; Xiong J; Li G; Fang Y; An T
    Ecotoxicol Environ Saf; 2014 Jun; 104():220-5. PubMed ID: 24726932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of hexavalent chromium resistance and removal by microorganisms.
    Joutey NT; Sayel H; Bahafid W; El Ghachtouli N
    Rev Environ Contam Toxicol; 2015; 233():45-69. PubMed ID: 25367133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Cr(VI) removal and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium.
    Tang S; Yin H; Zhou S; Chen S; Peng H; Liu Z; Dang Z
    Chemosphere; 2016 May; 150():24-32. PubMed ID: 26891353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Cu
    Ma Y; Zhao Y; Wang Y; Li X; Sun F; Corvini PF; Ji R
    J Environ Sci (China); 2017 Dec; 62():60-67. PubMed ID: 29289293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel pathways for biotransformation of tetrabromobisphenol A by Phanerochaete chrysosporium, combined with mechanism analysis at proteome level.
    Chen Z; Yin H; Peng H; Lu G; Liu Z; Dang Z
    Sci Total Environ; 2019 Apr; 659():1352-1361. PubMed ID: 31096345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. strain, JXS-2-02, isolated from anaerobic sludge.
    Peng X; Zhang Z; Luo W; Jia X
    Bioresour Technol; 2013 Jan; 128():173-9. PubMed ID: 23201509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii.
    Wei S; Cao J; Ma X; Ping J; Zhang C; Ke T; Zhang Y; Tao Y; Chen L
    Ecotoxicol Environ Saf; 2020 Jul; 198():110648. PubMed ID: 32388188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products.
    Uhnáková B; Ludwig R; Pěknicová J; Homolka L; Lisá L; Šulc M; Petříčková A; Elzeinová F; Pelantová H; Monti D; Křen V; Haltrich D; Martínková L
    Bioresour Technol; 2011 Oct; 102(20):9409-15. PubMed ID: 21865031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the characteristics and mechanism of aerobic biodegradation of tetrabromobisphenol A by Irpex lacteus F17.
    Chen J; Wu J; Fan L; Jia R
    J Basic Microbiol; 2021 May; 61(5):419-429. PubMed ID: 33721360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation of aerobic degrading strains for TBBPA and the properties of biodegradation].
    Qian YY; Liu LL; Yu XJ; Ding C; Wang ZP; Shi YH; Li CJ
    Huan Jing Ke Xue; 2012 Nov; 33(11):3962-6. PubMed ID: 23323432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate and transformation of tetrabromobisphenol A in natural waters, mediated by oxidoreductase enzymes.
    Feng Y; Lu K; Gao S; Mao L
    Environ Sci Process Impacts; 2017 Apr; 19(4):596-604. PubMed ID: 28327772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of triphenyl phosphate by Pycnoporus sanguineus: Metabolic pathway, proteomic mechanism and biotoxicity assessment.
    Feng M; Zhou J; Yu X; Wang H; Guo Y; Mao W
    J Hazard Mater; 2021 Sep; 417():125983. PubMed ID: 33975170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome.
    Rohr CO; Levin LN; Mentaberry AN; Wirth SA
    PLoS One; 2013; 8(12):e81033. PubMed ID: 24312521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system.
    Chen X; Xu Y; Fan M; Chen Y; Shen S
    J Environ Manage; 2019 Apr; 235():350-356. PubMed ID: 30703649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular degradation of tetrabromobisphenol A via biogenic reactive oxygen species by a marine Pseudoalteromonas sp.
    Gu C; Wang J; Guo M; Sui M; Lu H; Liu G
    Water Res; 2018 Oct; 142():354-362. PubMed ID: 29908463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.