These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31561458)

  • 1. Experimental and Numerical Study of AISI 4130 Steel Surface Hardening by Pulsed Nd:YAG Laser.
    Casalino G; Moradi M; Moghadam MK; Khorram A; Perulli P
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and Micromechanical Properties of Nd:YAG Laser Marking Stainless Steel (AISI 304 and AISI 316).
    Dywel P; Szczesny R; Domanowski P; Skowronski L
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature Modeling of AISI 1045 Steel during Surface Hardening Processes.
    Hung TP; Shi HE; Kuang JH
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure evolution and wear behavior of AISI 304 stainless steel after Nd:YAG pulsed laser surface melting.
    Cui CY; Shu YX; Cui XG; Hu JD
    Appl Opt; 2020 Dec; 59(34):10862-10869. PubMed ID: 33361907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature Field Numerical Analysis Mode and Verification of Quenching Heat Treatment Using Carbon Steel in Rotating Laser Scanning.
    Hung TP; Hsu CM; Tsai HA; Chen SC; Liu ZR
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30754634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarburization in Laser Surface Hardening of AISI 420 Martensitic Stainless Steel.
    Aprilia A; Maharjan N; Zhou W
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning electron microscopy and transmission electron microscopy microstructural investigation of high-speed tool steel after Nd:YAG pulsed laser melting.
    Kac S; Kusinski J; Zielinskalipiec A; Wronska I
    J Microsc; 2006 Oct; 224(Pt 1):65-7. PubMed ID: 17100909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hardness prediction considering the influence of alloying elements in laser hardening based on a 3D thermal model.
    Wang C; Lin Q; Sun Y; Han C; Hong J
    Appl Opt; 2021 Sep; 60(26):7973-7982. PubMed ID: 34613057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural characterization of laser surface melted AISI M2 tool steel.
    Arias J; Cabeza M; Castro G; Feijoo I; Merino P; Pena G
    J Microsc; 2010 Sep; 239(3):184-93. PubMed ID: 20701656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation of Stainless Steel-Carbon Steel Laminated Plate Considering Interface in Pulsed Laser Bending.
    Li Z; Wang X
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31052219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.
    Al-Sayed SR; Hussein AA; Nofal AA; Hassab Elnaby SI; Elgazzar H
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Thermal Damage Impact on Microstructure and Properties of Carburized AISI 9310 Gear Steel Grade by Destructive and Non-Destructive Testing Methods.
    Dychtoń K; Gradzik A; Kolek Ł; Raga K
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Power Diode Laser Surface Transformation Hardening of Ferrous Alloys.
    Czupryński A; Janicki D; Górka J; Grabowski A; Wyględacz B; Matus K; Karski W
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructural Tuning of a Laser-Cladding Layer by Means of a Mix of Commercial Inconel 625 and AISI H13 Powders.
    Muro M; Leunda J; Artola G; Soriano C
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30759752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hardness Prediction of Grind-Hardening Layer Based on Integrated Approach of Finite Element and Cellular Automata.
    Guo Y; Liu M; Yan Y
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metallurgical characteristics of non-precious alloys using Nd:YAG laser welding.
    Lee JH; Choi SK; Hong MH
    Biomater Res; 2015; 19():25. PubMed ID: 26635967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining the Finite Element Analysis and Kriging Model for Study on Laser Surface Hardening Parameters of Pitch Bearing Raceway.
    Zhang H; Zhu M; Ji S; Dou Y
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel.
    Szala M; Winiarski G; Wójcik Ł; Bulzak T
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels.
    Pańcikiewicz K; Świerczyńska A; Hućko P; Tumidajewicz M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.