These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31561516)

  • 21. Fantastic genes: where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice.
    Reyes VP
    Funct Integr Genomics; 2023 Jul; 23(3):238. PubMed ID: 37439874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance.
    Menguer PK; Sperotto RA; Ricachenevsky FK
    Genet Mol Biol; 2017; 40(1 suppl 1):238-252. PubMed ID: 28323300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots.
    Petitot AS; Kyndt T; Haidar R; Dereeper A; Collin M; de Almeida Engler J; Gheysen G; Fernandez D
    Ann Bot; 2017 Mar; 119(5):885-899. PubMed ID: 28334204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. African Rice (Oryza glaberrima Steud.): Lost Crop of the Enslaved Africans Discovered in Suriname.
    Van Andel T
    Econ Bot; 2010 Mar; 64(1):1-10. PubMed ID: 20339580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic control of seed shattering during African rice domestication.
    Lv S; Wu W; Wang M; Meyer RS; Ndjiondjop MN; Tan L; Zhou H; Zhang J; Fu Y; Cai H; Sun C; Wing RA; Zhu Z
    Nat Plants; 2018 Jun; 4(6):331-337. PubMed ID: 29872176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication.
    Wu W; Liu X; Wang M; Meyer RS; Luo X; Ndjiondjop MN; Tan L; Zhang J; Wu J; Cai H; Sun C; Wang X; Wing RA; Zhu Z
    Nat Plants; 2017 May; 3():17064. PubMed ID: 28481332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aroma chemistry of African Oryza glaberrima and Oryza sativa rice and their interspecific hybrids.
    Cho S; Nuijten E; Shewfelt RL; Kays SJ
    J Sci Food Agric; 2014 Mar; 94(4):727-35. PubMed ID: 23907855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A database of wild rice germplasm of Oryza rufipogon species complex from different agro-climatic zones of India.
    Tripathy K; Singh B; Singh N; Rai V; Misra G; Singh NK
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29982559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications.
    Mishra R; Joshi RK; Zhao K
    Front Plant Sci; 2018; 9():1361. PubMed ID: 30283477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rice Functional Genomics Research: Past Decade and Future.
    Li Y; Xiao J; Chen L; Huang X; Cheng Z; Han B; Zhang Q; Wu C
    Mol Plant; 2018 Mar; 11(3):359-380. PubMed ID: 29409893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prospects of breeding high-quality rice using post-genomic tools.
    Anacleto R; Cuevas RP; Jimenez R; Llorente C; Nissila E; Henry R; Sreenivasulu N
    Theor Appl Genet; 2015 Aug; 128(8):1449-66. PubMed ID: 25993897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomics-based precision breeding approaches to improve drought tolerance in rice.
    Swamy BP; Kumar A
    Biotechnol Adv; 2013 Dec; 31(8):1308-18. PubMed ID: 23702083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The complex history of the domestication of rice.
    Sweeney M; McCouch S
    Ann Bot; 2007 Nov; 100(5):951-7. PubMed ID: 17617555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rice Chloroplast Genome Variation Architecture and Phylogenetic Dissection in Diverse Oryza Species Assessed by Whole-Genome Resequencing.
    Tong W; Kim TS; Park YJ
    Rice (N Y); 2016 Dec; 9(1):57. PubMed ID: 27757948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice.
    Zhao Q; Feng Q; Lu H; Li Y; Wang A; Tian Q; Zhan Q; Lu Y; Zhang L; Huang T; Wang Y; Fan D; Zhao Y; Wang Z; Zhou C; Chen J; Zhu C; Li W; Weng Q; Xu Q; Wang ZX; Wei X; Han B; Huang X
    Nat Genet; 2018 Feb; 50(2):278-284. PubMed ID: 29335547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current status of genomic resources on wild relatives of rice.
    Kamboj R; Singh B; Mondal TK; Bisht DS
    Breed Sci; 2020 Apr; 70(2):135-144. PubMed ID: 32523396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin, dispersal, cultivation and variation of rice.
    Khush GS
    Plant Mol Biol; 1997 Sep; 35(1-2):25-34. PubMed ID: 9291957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Domestication Genomics: Untangling the Complex History of African Rice.
    Snodgrass SJ; Hufford MB
    Curr Biol; 2018 Jul; 28(14):R786-R788. PubMed ID: 30040938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rice functional genomics research: progress and implications for crop genetic improvement.
    Jiang Y; Cai Z; Xie W; Long T; Yu H; Zhang Q
    Biotechnol Adv; 2012; 30(5):1059-70. PubMed ID: 21888963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences.
    Wambugu PW; Brozynska M; Furtado A; Waters DL; Henry RJ
    Sci Rep; 2015 Sep; 5():13957. PubMed ID: 26355750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.