These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31561593)

  • 1. Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets.
    Chen Z; Xu Y; Hua J; Zhou X; Wang X; Huang L
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Properties and Shrinkage Behavior of Concrete-Containing Graphene-Oxide Nanosheets.
    Chen Z; Xu Y; Hua J; Wang X; Huang L; Zhou X
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Properties of Concrete Containing Graphene Oxide Nanosheets.
    Wu YY; Que L; Cui Z; Lambert P
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction Model and Mechanism for Drying Shrinkage of High-Strength Lightweight Concrete with Graphene Oxide.
    Hong X; Lee JC; Ng JL; Abdulkareem M; Yusof ZM; Li Q; He Q
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Evaluation of CEB-FIP 2010 Model for Concrete Creep and Shrinkage.
    Pan Z; Zhang H; Zeng B; Wang Y
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model.
    Mei S; Li X; Wang X; Liu X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep and Shrinkage Properties of Nano-SiO
    Zhou Y; Zhuang J; Lin W; Xu W; Hu R
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete.
    Gamnitzer P; Brugger A; Drexel M; Hofstetter G
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Graphene Oxide Nanosheets on Physical Properties of Ultra-High-Performance Concrete with High Volume Supplementary Cementitious Materials.
    Wu YY; Zhang J; Liu C; Zheng Z; Lambert P
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32325893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Creep and Shrinkage Behavior of Concrete-Filled Steel Tube.
    Nguyen DB; Lin WS; Liao WC
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
    Drexel M; Theiner Y; Hofstetter G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
    Yoon M; Kim G; Kim Y; Lee T; Choe G; Hwang E; Nam J
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Type and Content of Fibers, Water-to-Cement Ratio, and Cementitious Materials on the Shrinkage and Creep of Ultra-High Performance Concrete.
    Chen Y; Liu P; Sha F; Yu Z; He S; Xu W; Lv M
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking Standard and Micromechanical Models for Creep and Shrinkage of Concrete Relevant for Nuclear Power Plants.
    Šmilauer V; Dohnalová L; Jirásek M; Sanahuja J; Seetharam S; Babaei S
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creep Deformation and Its Effect on Mechanical Properties and Microstructure of Magnesium Phosphate Cement Concrete.
    Gao Y; Qin J; Li Z; Jia X; Qian J
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensile Creep Model of Slab Concrete Based on Microprestress-Solidification Theory.
    Zhao Z; Zhang H; Fang B; Sun Y; Zhong Y; Shi T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Concrete Creep in Compression, Tension, and Bending under Drying Condition.
    Kim SG; Park YS; Lee YH
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.