These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31561600)

  • 41. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic.
    Neukermans G; Oziel L; Babin M
    Glob Chang Biol; 2018 Jun; 24(6):2545-2553. PubMed ID: 29394007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variations in the phytoplankton community due to dust additions in eutrophication, LNLC and HNLC oceanic zones.
    Zhang C; Yao X; Chen Y; Chu Q; Yu Y; Shi J; Gao H
    Sci Total Environ; 2019 Jun; 669():282-293. PubMed ID: 30878935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms.
    Aguilar-Maldonado JA; Santamaría-Del-Ángel E; Gonzalez-Silvera A; Sebastiá-Frasquet MT
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating tropical phytoplankton phenology metrics using contemporary tools.
    Gittings JA; Raitsos DE; Kheireddine M; Racault MF; Claustre H; Hoteit I
    Sci Rep; 2019 Jan; 9(1):674. PubMed ID: 30679755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retrieval of phytoplankton size from bio-optical measurements: theory and applications.
    Roy S; Sathyendranath S; Platt T
    J R Soc Interface; 2011 May; 8(58):650-60. PubMed ID: 21084343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.
    Gregg WW; Rousseaux CS; Franz BA
    Remote Sens Lett; 2017; 8(12):1102-1111. PubMed ID: 29308292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches.
    Evers-King H; Bernard S; Robertson Lain L; Probyn TA
    Opt Express; 2014 May; 22(10):11536-51. PubMed ID: 24921275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters.
    Ward BA
    PLoS One; 2015; 10(8):e0135581. PubMed ID: 26285028
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential impacts of global change variables on coastal South Atlantic phytoplankton: Role of seasonal variations.
    Cabrerizo MJ; Carrillo P; Villafañe VE; Helbling EW
    Mar Environ Res; 2017 Apr; 125():63-72. PubMed ID: 28187324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.
    Wei J; Lee Z
    Appl Opt; 2015 Feb; 54(4):636-49. PubMed ID: 25967770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.
    Barton AD; Irwin AJ; Finkel ZV; Stock CA
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2964-9. PubMed ID: 26903635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming.
    Bishop IW; Anderson SI; Collins S; Rynearson TA
    Glob Chang Biol; 2022 Oct; 28(19):5755-5767. PubMed ID: 35785458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Phytoplankton population dynamics along the Casablanca - El Jadida Atlantic coast].
    Tahraoui S; Ennaffah B; Morton SL; Souilmi F; Chaira K; Sagou R; Reani A; Sabour B
    Biol Aujourdhui; 2024; 218(1-2):63-72. PubMed ID: 39007778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Decomposing total suspended particle absorption based on the spectral correlation relationship].
    Wang GF; Cao WX; Yang DT; Zhao J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):201-6. PubMed ID: 19385239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Review of estimation on oceanic primary productivity by using remote sensing methods.].
    Xu HY; Zhou WF; Ji SJ
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):3042-3050. PubMed ID: 29732871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-trait analysis reveals large interspecific differences for phytoplankton in response to thermal change.
    Ye M; Xiao M; Zhang S; Huang J; Lin J; Lu Y; Liang S; Zhao J; Dai X; Xu L; Li M; Zhou Y; Overmans S; Xia J; Jin P
    Mar Environ Res; 2023 Jun; 188():106008. PubMed ID: 37121174
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.
    Mojica KD; Huisman J; Wilhelm SW; Brussaard CP
    ISME J; 2016 Feb; 10(2):500-13. PubMed ID: 26262815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.
    Mahadevan A; D'Asaro E; Lee C; Perry MJ
    Science; 2012 Jul; 337(6090):54-8. PubMed ID: 22767922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The relationship between sea surface temperature and chlorophyll concentration of phytoplanktons in the Black Sea using remote sensing techniques.
    Kavak MT; Karadogan S
    J Environ Biol; 2012 Apr; 33(2 Suppl):493-8. PubMed ID: 23424855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean.
    Koeller P; Fuentes-Yaco C; Platt T; Sathyendranath S; Richards A; Ouellet P; Orr D; Skúladóttir U; Wieland K; Savard L; Aschan M
    Science; 2009 May; 324(5928):791-3. PubMed ID: 19423827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.