These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 31561747)

  • 1. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics.
    Langer K; Joensson HN
    SLAS Technol; 2020 Apr; 25(2):111-122. PubMed ID: 31561747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Automation in 3D Cell Culture: Selective and Gentle High-Throughput Handling of Spheroids and Organoids via Novel Pick-Flow-Drop Principle.
    Zieger V; Frejek D; Zimmermann S; Miotto GAA; Koltay P; Zengerle R; Kartmann S
    Adv Healthc Mater; 2024 Apr; 13(9):e2303350. PubMed ID: 38265410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review.
    Kim S; Lam PY; Jayaraman A; Han A
    Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array.
    Tomasi RF; Sart S; Champetier T; Baroud CN
    Cell Rep; 2020 May; 31(8):107670. PubMed ID: 32460010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic cap-to-dispense (μCD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling.
    Wang J; Deng K; Zhou C; Fang Z; Meyer C; Deshpande KU; Li Z; Mi X; Luo Q; Hammock BD; Tan C; Chen Y; Pan T
    Lab Chip; 2019 Oct; 19(20):3405-3415. PubMed ID: 31501848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent methods of droplet microfluidics and their applications in spheroids and organoids.
    Wang Y; Liu M; Zhang Y; Liu H; Han L
    Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printed Solutions for Spheroid Engineering and Cancer Research.
    Butelmann T; Gu Y; Li A; Tribukait-Riemenschneider F; Hoffmann J; Molazem A; Jaeger E; Pellegrini D; Forget A; Shastri VP
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled fabrication of functional liver spheroids with microfluidic flow cytometric printing.
    Zhang P; Li X; Chen JY; Abate AR
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35917810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells.
    Dornhof J; Zieger V; Kieninger J; Frejek D; Zengerle R; Urban GA; Kartmann S; Weltin A
    Lab Chip; 2022 Nov; 22(22):4369-4381. PubMed ID: 36254669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation.
    van Loo B; Schot M; Gurian M; Kamperman T; Leijten J
    Adv Healthc Mater; 2024 Jan; 13(2):e2300095. PubMed ID: 37793116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-Based Generation of 3D Collagen Spheres to Investigate Multicellular Spheroid Invasion.
    Bertillot F; Attieh Y; Delarue M; Gurchenkov BG; Descroix S; Vignjevic DM; Ferraro D
    Methods Mol Biol; 2017; 1612():269-279. PubMed ID: 28634950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital microfluidics for spheroid-based invasion assays.
    Bender BF; Aijian AP; Garrell RL
    Lab Chip; 2016 Apr; 16(8):1505-13. PubMed ID: 27020962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable robotic biofabrication of tissue spheroids.
    Mehesz AN; Brown J; Hajdu Z; Beaver W; da Silva JV; Visconti RP; Markwald RR; Mironov V
    Biofabrication; 2011 Jun; 3(2):025002. PubMed ID: 21562365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.
    Lee GH; Lee JS; Wang X; Lee SH
    Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning.
    Trossbach M; Åkerlund E; Langer K; Seashore-Ludlow B; Joensson HN
    SLAS Technol; 2023 Dec; 28(6):423-432. PubMed ID: 36990352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile One Step Formation and Screening of Tumor Spheroids Using Droplet-Microarray Platform.
    Popova AA; Tronser T; Demir K; Haitz P; Kuodyte K; Starkuviene V; Wajda P; Levkin PA
    Small; 2019 Jun; 15(25):e1901299. PubMed ID: 31058427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Measurements of Intra-Cellular and Secreted Cytokine from Single Spheroids Using Anchored Microfluidic Droplets.
    Saint-Sardos A; Sart S; Lippera K; Brient-Litzler E; Michelin S; Amselem G; Baroud CN
    Small; 2020 Dec; 16(49):e2002303. PubMed ID: 33185938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.