These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 31562082)

  • 21. High frame rate imaging with a small number of array elements.
    Lu JY; He S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1416-21. PubMed ID: 18244337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent array imaging using phased subarrays. Part II: simulations and experimental results.
    Johnson JA; Oralkan O; Ergun S; Demirci U; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):51-64. PubMed ID: 15742562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forward-viewing CMUT arrays for medical imaging.
    Demirci U; Ergun AS; Oralkan O; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):887-95. PubMed ID: 15301009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Analytical Approach to Designing Optimal Sparse 1-D Phased Arrays for Handheld Ultrasound Imaging.
    Song JH; Lee J; Yeo S; Kim GD; Song TK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1354-1365. PubMed ID: 32070951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasparse, ultrawideband arrays.
    Schwartz JL; Steinberg BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):376-93. PubMed ID: 18244190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of dead elements on the accuracy of Doppler ultrasound measurements.
    Vachutka J; Dolezal L; Kollmann C; Klein J
    Ultrason Imaging; 2014 Jan; 36(1):18-34. PubMed ID: 24275537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of wide-band linear arrays.
    Cardone G; Cincotti G; Gori P; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):943-52. PubMed ID: 11477786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound therapy transducers with space-filling non-periodic arrays.
    Raju BI; Hall CS; Seip R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):944-54. PubMed ID: 21622050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional arrays for medical ultrasound.
    Smith SW; Trahey GE; von Ramm OT
    Ultrason Imaging; 1992 Jul; 14(3):213-33. PubMed ID: 1448889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-dimensional random arrays for real time volumetric imaging.
    Davidsen RE; Jensen JA; Smith SW
    Ultrason Imaging; 1994 Jul; 16(3):143-63. PubMed ID: 7839555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental verification of SNR and parallel imaging improvements using composite arrays.
    Maunder A; Fallone BG; Daneshmand M; De Zanche N
    NMR Biomed; 2015 Feb; 28(2):141-53. PubMed ID: 25388793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volumetric ultrasound imaging using 2-D CMUT arrays.
    Oralkan O; Ergun AS; Cheng CH; Johnson JA; Karaman M; Lee TH; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1581-94. PubMed ID: 14682642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays.
    Liang Y; Ying R; Lu Z; Liu P
    Sensors (Basel); 2014 Nov; 14(11):21981-2000. PubMed ID: 25420150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Sparse Cross Array Synthesis via Perturbed Convex Optimization.
    Gu B; Chen Y; Jiang R; Liu X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of different spatial sampling patterns for sparse array transducer design.
    Nikolov SI; Jensen JA
    Ultrasonics; 2000 Jul; 37(10):667-71. PubMed ID: 10950348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sparse Doppler Sensing Based on Nested Arrays.
    Cohen R; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2349-2364. PubMed ID: 30281446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):961-71. PubMed ID: 18238501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized Golay-9 array configurations for mid-frequency compensation in optical sparse aperture systems.
    Hui M; Zhang H; Wu Y; Li X; Liu M; Dong L; Kong L; Zhao Y
    Appl Opt; 2021 Sep; 60(26):8120-8129. PubMed ID: 34613075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study.
    Ellens N; Pulkkinen A; Song J; Hynynen K
    Phys Med Biol; 2011 Aug; 56(15):4913-32. PubMed ID: 21772081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-frequency harmonic arrays: initial experience with a novel transducer concept for nonlinear contrast imaging.
    Forsberg F; Shi WT; Jadidian B; Winder AA
    Ultrasonics; 2004 Dec; 43(2):79-85. PubMed ID: 15530981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.