BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31562187)

  • 1. Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice (
    Robertson CE; McClelland GB
    J Exp Biol; 2019 Oct; 222(Pt 21):. PubMed ID: 31562187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of homeothermic endothermy is delayed in high-altitude native deer mice (Peromyscus maniculatus).
    Robertson CE; Tattersall GJ; McClelland GB
    Proc Biol Sci; 2019 Jul; 286(1907):20190841. PubMed ID: 31337307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice.
    Coulson SZ; Robertson CE; Mahalingam S; McClelland GB
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34060604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP; Jones J; Wolf CJ; Cheviron ZA
    Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice.
    Velotta JP; Robertson CE; Schweizer RM; McClelland GB; Cheviron ZA
    Mol Biol Evol; 2020 Aug; 37(8):2309-2321. PubMed ID: 32243546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus).
    Van Sant MJ; Hammond KA
    Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA; Bachman GC; Connaty AD; McClelland GB; Storz JF
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8635-40. PubMed ID: 22586089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice.
    Tate KB; Ivy CM; Velotta JP; Storz JF; McClelland GB; Cheviron ZA; Scott GR
    J Exp Biol; 2017 Oct; 220(Pt 20):3616-3620. PubMed ID: 28839010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude.
    Dane DM; Cao K; Lu H; Yilmaz C; Dolan J; Thaler CD; Ravikumar P; Hammond KA; Hsia CCW
    J Appl Physiol (1985); 2018 Nov; 125(5):1411-1423. PubMed ID: 30091664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ancestral and developmental cold alter brown adipose tissue function and adult thermal acclimation in Peromyscus.
    Robertson CE; McClelland GB
    J Comp Physiol B; 2021 May; 191(3):589-601. PubMed ID: 33644836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid oxidation during thermogenesis in high-altitude deer mice (
    Lyons SA; Tate KB; Welch KC; McClelland GB
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R735-R746. PubMed ID: 33729020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated changes across the O
    Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolved changes in maternal care in high-altitude native deer mice.
    Robertson CE; McClelland GB
    J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 33692080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice.
    Cheviron ZA; Bachman GC; Storz JF
    J Exp Biol; 2013 Apr; 216(Pt 7):1160-6. PubMed ID: 23197099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of shivering and non-shivering thermogenesis in deer mice (Peromyscus maniculatus).
    Lilly FB; Wunder BA
    Comp Biochem Physiol C Comp Pharmacol; 1979; 63C(1):31-4. PubMed ID: 37038
    [No Abstract]   [Full Text] [Related]  

  • 18. Fuel Use in Mammals: Conserved Patterns and Evolved Strategies for Aerobic Locomotion and Thermogenesis.
    McClelland GB; Lyons SA; Robertson CE
    Integr Comp Biol; 2017 Aug; 57(2):231-239. PubMed ID: 28859408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude.
    Garrett EJ; Prasad SK; Schweizer RM; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2024 Apr; 326(4):R297-R310. PubMed ID: 38372126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice.
    Lyons SA; McClelland GB
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35552735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.