BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31562187)

  • 21. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice.
    Lui MA; Mahalingam S; Patel P; Connaty AD; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R779-91. PubMed ID: 25695288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue.
    Lyons SA; McClelland GB
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38506250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ontogenesis of evolved changes in respiratory physiology in deer mice native to high altitude.
    Ivy CM; Greaves MA; Sangster ED; Robertson CE; Natarajan C; Storz JF; McClelland GB; Scott GR
    J Exp Biol; 2020 Mar; 223(Pt 5):. PubMed ID: 32054682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes.
    Ivy CM; Scott GR
    Acta Physiol (Oxf); 2017 Dec; 221(4):266-282. PubMed ID: 28640969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA; Connaty AD; McClelland GB; Storz JF
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitudes.
    Nikel KE; Shanishchara NK; Ivy CM; Dawson NJ; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():98-104. PubMed ID: 29175484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle metabolism in sea-acclimatized king penguins. I. Thermogenic mechanisms.
    Roussel D; Le Coadic M; Rouanet JL; Duchamp C
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 32968000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prior exercise training improves cold tolerance independent of indices associated with non-shivering thermogenesis.
    Knuth CM; Peppler WT; Townsend LK; Miotto PM; Gudiksen A; Wright DC
    J Physiol; 2018 Sep; 596(18):4375-4391. PubMed ID: 30109697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.
    Mahalingam S; McClelland GB; Scott GR
    J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development partly determines the aerobic performance of adult deer mice, Peromyscus maniculatus.
    Russell GA; Rezende EL; Hammond KA
    J Exp Biol; 2008 Jan; 211(Pt 1):35-41. PubMed ID: 18083730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental plasticity in aerobic performance in deer mice (Peromyscus maniculatus).
    Hammond KA; Chappell MA; Kristan DM
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Oct; 133(2):213-24. PubMed ID: 12208296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue.
    Blondin DP; Daoud A; Taylor T; Tingelstad HC; Bézaire V; Richard D; Carpentier AC; Taylor AW; Harper ME; Aguer C; Haman F
    J Physiol; 2017 Mar; 595(6):2099-2113. PubMed ID: 28025824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The adaptive benefit of evolved increases in hemoglobin-O
    Wearing OH; Ivy CM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Natarajan C; Cheviron ZA; Storz JF; Scott GR
    BMC Biol; 2021 Jun; 19(1):128. PubMed ID: 34158035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution and developmental plasticity of lung structure in high-altitude deer mice.
    West CM; Ivy CM; Husnudinov R; Scott GR
    J Comp Physiol B; 2021 Mar; 191(2):385-396. PubMed ID: 33533958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NATURAL SELECTION ON THERMOGENIC CAPACITY OF HIGH-ALTITUDE DEER MICE.
    Hayes JP; O'Connor CS
    Evolution; 1999 Aug; 53(4):1280-1287. PubMed ID: 28565539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Turning up the heat": role of neurotrophic batokines in the postnatal maturation and remodeling of brown adipose tissue in deer mice.
    Robertson CE; Weaver FE; Nurse CA
    Am J Physiol Endocrinol Metab; 2023 Jul; 325(1):E32-E45. PubMed ID: 37224469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolved reductions in body temperature and the metabolic costs of thermoregulation in deer mice native to high altitude.
    Wearing OH; Scott GR
    Proc Biol Sci; 2022 Sep; 289(1983):20221553. PubMed ID: 36168757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic recovery from submaximal exercise in hypoxia acclimated high altitude deer mice (Peromyscus maniculatus).
    Dessureault LM; Tod RA; McClelland B
    Comp Biochem Physiol B Biochem Mol Biol; 2024 Jun; ():111004. PubMed ID: 38945522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotypic plasticity to chronic cold exposure in two species of Peromyscus from different environments.
    Hayward L; Robertson CE; McClelland GB
    J Comp Physiol B; 2022 Mar; 192(2):335-348. PubMed ID: 34988665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Commentary: Hierarchical reductionism approach to understanding adaptive variation in animal performance.
    Wearing OH; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110636. PubMed ID: 34119652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.