These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31562310)

  • 1. Direct imaging of structural disordering and heterogeneous dynamics of fullerene molecular liquid.
    Choe J; Lee Y; Park J; Kim Y; Kim CU; Kim K
    Nat Commun; 2019 Sep; 10(1):4395. PubMed ID: 31562310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics at the crystal-melt interface in a supercooled chalcogenide liquid near the glass transition.
    Li J; Jangid R; Zhu W; Kohne C; Fluerasu A; Zhang Y; Sen S; Kukreja R
    Sci Rep; 2020 Apr; 10(1):5881. PubMed ID: 32246019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and dynamical heterogeneity in deeply supercooled liquid silicon.
    Morishita T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):020501. PubMed ID: 18351974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics in supercooled P-Se liquids near the glass transition: results from 31P NMR spectroscopy.
    Gjersing EL; Sen S; Aitken BG
    J Phys Chem B; 2011 Mar; 115(12):2857-63. PubMed ID: 21384934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.
    Sastre J; Mannelli I; Reigada R
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2872-2882. PubMed ID: 28780125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence for fast heterogeneous collective structural relaxation in a supercooled liquid near the glass transition.
    Russina M; Mezei F; Lechner R; Longeville S; Urban B
    Phys Rev Lett; 2000 Apr; 84(16):3630-3. PubMed ID: 11019163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of slow dynamics in a minimal model of frustration-limited domains.
    Geissler PL; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021501. PubMed ID: 14995443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules.
    Kaseman DC; Gulbiten O; Aitken BG; Sen S
    J Chem Phys; 2016 May; 144(17):174501. PubMed ID: 27155639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of molecular cooperativity near the glass transition.
    Russell EV; Israeloff NE
    Nature; 2000 Dec; 408(6813):695-8. PubMed ID: 11130066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct evidence of heterogeneous mechanical relaxation in supercooled liquids.
    Furukawa A; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061503. PubMed ID: 22304093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common behaviors associated with the glass transitions of water-like models.
    Horstmann R; Vogel M
    J Chem Phys; 2017 Jul; 147(3):034505. PubMed ID: 28734288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic phase coexistence in glass-forming liquids.
    Pastore R; Coniglio A; Ciamarra MP
    Sci Rep; 2015 Jul; 5():11770. PubMed ID: 26156304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glass formation and thermodynamics of supercooled monatomic liquids.
    Hoang VV; Odagaki T
    J Phys Chem B; 2011 Jun; 115(21):6946-56. PubMed ID: 21553835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond Dissociation and Reactivity of HF and H
    Biskupek J; Skowron ST; Stoppiello CT; Rance GA; Alom S; Fung KLY; Whitby RJ; Levitt MH; Ramasse QM; Kaiser U; Besley E; Khlobystov AN
    ACS Nano; 2020 Sep; 14(9):11178-11189. PubMed ID: 32816453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct imaging of rotating molecules anchored on graphene.
    Choe J; Lee Y; Fang L; Lee GD; Bao Z; Kim K
    Nanoscale; 2016 Jul; 8(27):13174-80. PubMed ID: 27333828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct structural and dynamical difference between supercooled and normal liquids of hydrogen molecules.
    Hyeon-Deuk K; Ando K
    Phys Chem Chem Phys; 2016 Jan; 18(4):2314-8. PubMed ID: 26750610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependence of beam-driven dynamics in graphene-fullerene sandwiches.
    Strobel KR; Schlegel M; Jain M; Kretschmer S; Krasheninnikov AV; Meyer JC
    Micron; 2024 Sep; 184():103666. PubMed ID: 38850966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.