These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31562383)

  • 1. A nanofluidic device for parallel single nanoparticle catalysis in solution.
    Levin S; Fritzsche J; Nilsson S; Runemark A; Dhokale B; Ström H; Sundén H; Langhammer C; Westerlund F
    Nat Commun; 2019 Sep; 10(1):4426. PubMed ID: 31562383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.
    Fritzsche J; Albinsson D; Fritzsche M; Antosiewicz TJ; Westerlund F; Langhammer C
    Nano Lett; 2016 Dec; 16(12):7857-7864. PubMed ID: 27960495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofluidic Trapping of Faceted Colloidal Nanocrystals for Parallel Single-Particle Catalysis.
    Levin S; Lerch S; Boje A; Fritzsche J; Kk S; Ström H; Moth-Poulsen K; Sundén H; Hellman A; Westerlund F; Langhammer C
    ACS Nano; 2022 Sep; 16(9):15206-15214. PubMed ID: 36054658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-Free Imaging of Catalytic H
    Altenburger B; Andersson C; Levin S; Westerlund F; Fritzsche J; Langhammer C
    ACS Nano; 2023 Nov; 17(21):21030-21043. PubMed ID: 37847543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Sep; 17(18):3006-3025. PubMed ID: 28752878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Plasmonic Nanospectroscopy of the CO Oxidation Reaction over Single Pt Nanoparticles.
    Liu S; Arce AS; Nilsson S; Albinsson D; Hellberg L; Alekseeva S; Langhammer C
    ACS Nano; 2019 May; 13(5):6090-6100. PubMed ID: 31091069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shedding Light on CO Oxidation Surface Chemistry on Single Pt Catalyst Nanoparticles Inside a Nanofluidic Model Pore.
    Albinsson D; Bartling S; Nilsson S; Ström H; Fritzsche J; Langhammer C
    ACS Catal; 2021 Feb; 11(4):2021-2033. PubMed ID: 33643681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level.
    Xu W; Kong JS; Chen P
    Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Particle Approaches to Plasmon-Driven Catalysis.
    Hamans RF; Kamarudheen R; Baldi A
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging.
    Albinsson D; Boje A; Nilsson S; Tiburski C; Hellman A; Ström H; Langhammer C
    Nat Commun; 2020 Sep; 11(1):4832. PubMed ID: 32973158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-demand in situ generation of oxygen in a nanofluidic embedded planar microband electrochemical reactor.
    Xu W; Foster E; Ma C; Bohn PW
    Microfluid Nanofluidics; 2015 Nov; 19(5):1181-1189. PubMed ID: 30319319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges.
    Guo S; Meshot ER; Kuykendall T; Cabrini S; Fornasiero F
    Adv Mater; 2015 Oct; 27(38):5726-37. PubMed ID: 26037895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to single-nanoparticle catalysis.
    Sambur JB; Chen P
    Annu Rev Phys Chem; 2014; 65():395-422. PubMed ID: 24423372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber.
    Faez S; Lahini Y; Weidlich S; Garmann RF; Wondraczek K; Zeisberger M; Schmidt MA; Orrit M; Manoharan VN
    ACS Nano; 2015 Dec; 9(12):12349-57. PubMed ID: 26505649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy.
    Nguyen L; Tao FF; Tang Y; Dou J; Bao XJ
    Chem Rev; 2019 Jun; 119(12):6822-6905. PubMed ID: 31181905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft electrostatic trapping in nanofluidics.
    Gerspach MA; Mojarad N; Sharma D; Pfohl T; Ekinci Y
    Microsyst Nanoeng; 2017; 3():17051. PubMed ID: 31057877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices.
    Fontana M; Fijen C; Lemay SG; Mathwig K; Hohlbein J
    Lab Chip; 2018 Dec; 19(1):79-86. PubMed ID: 30468446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects.
    Saqib M; Zafar M; Halawa MI; Murtaza S; Kamal GM; Xu G
    ACS Meas Sci Au; 2024 Feb; 4(1):3-24. PubMed ID: 38404493
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Albinsson D; Bartling S; Nilsson S; Ström H; Fritzsche J; Langhammer C
    Sci Adv; 2020 Jun; 6(25):eaba7678. PubMed ID: 32596464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Parallelized Nanofluidic Device for High-Throughput Optical DNA Mapping of Bacterial Plasmids.
    Kk S; Lin YL; Sewunet T; Wrande M; Sandegren L; Giske CG; Westerlund F
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.