These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31562383)

  • 21. Biochemical sensing by nanofluidic crystal in a confined space.
    Zhao W; Wang B; Wang W
    Lab Chip; 2016 May; 16(11):2050-8. PubMed ID: 27098158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of self-assembled monolayer formation on individual nanoparticles.
    Smith JG; Jain PK
    Phys Chem Chem Phys; 2016 Aug; 18(34):23990-7. PubMed ID: 27523488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations.
    Nilsson S; Albinsson D; Antosiewicz TJ; Fritzsche J; Langhammer C
    Nanoscale; 2019 Nov; 11(43):20725-20733. PubMed ID: 31650143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Label-Free Detections for Nanofluidic Analytical Devices.
    Le THH; Shimizu H; Morikawa K
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32977690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput nanoparticle catalysis: partial oxidation of propylene.
    Duan S; Kahn M; Senkan S
    Comb Chem High Throughput Screen; 2007 Feb; 10(2):111-9. PubMed ID: 17305486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency.
    Lin YL; Huang YJ; Teerapanich P; Leïchlé T; Chou CF
    Biomicrofluidics; 2016 May; 10(3):034114. PubMed ID: 27375819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer.
    Kole TP; Liao KT; Schiffels D; Ilic BR; Strychalski EA; Kralj JG; Liddle JA; Dritschilo A; Stavis SM
    J Res Natl Inst Stand Technol; 2015; 120():252-69. PubMed ID: 26958449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanofluidics and the chemical potential applied to solvent and solute transport.
    Eijkel JC; van den Berg A
    Chem Soc Rev; 2010 Mar; 39(3):957-73. PubMed ID: 20179818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Efficient Ionic Photocurrent Generation through WS
    Jia P; Wen Q; Liu D; Zhou M; Jin X; Ding L; Dong H; Lu D; Jiang L; Guo W
    Small; 2019 Dec; 15(50):e1905355. PubMed ID: 31714020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands.
    Lawrence RL; Hughes ZE; Cendan VJ; Liu Y; Lim CK; Prasad PN; Swihart MT; Walsh TR; Knecht MR
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33640-33651. PubMed ID: 30185023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles.
    Špačková B; Klein Moberg H; Fritzsche J; Tenghamn J; Sjösten G; Šípová-Jungová H; Albinsson D; Lubart Q; van Leeuwen D; Westerlund F; Midtvedt D; Esbjörner EK; Käll M; Volpe G; Langhammer C
    Nat Methods; 2022 Jun; 19(6):751-758. PubMed ID: 35637303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy.
    Brasiliense V; Berto P; Combellas C; Tessier G; Kanoufi F
    Acc Chem Res; 2016 Sep; 49(9):2049-57. PubMed ID: 27598333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study.
    Han KS; Liu G; Zhou X; Medina RE; Chen P
    Nano Lett; 2012 Mar; 12(3):1253-9. PubMed ID: 22276804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter.
    Li ZX; Xue W; Guan BT; Shi FB; Shi ZJ; Jiang H; Yan CH
    Nanoscale; 2013 Feb; 5(3):1213-20. PubMed ID: 23299453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Periodic oscillation of ion conduction of nanofluidic diodes using a chemical oscillator.
    Zhang H; Hou J; Ou R; Hu Y; Wang H; Jiang L
    Nanoscale; 2017 Jun; 9(21):7297-7304. PubMed ID: 28524913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion.
    Fringes S; Holzner F; Knoll AW
    Beilstein J Nanotechnol; 2018; 9():301-310. PubMed ID: 29441273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors.
    Zhou Y; Chen C; Zhang X; Liu D; Xu L; Dai J; Liou SC; Wang Y; Li C; Xie H; Wu Q; Foster B; Li T; Briber RM; Hu L
    J Am Chem Soc; 2019 Nov; 141(44):17830-17837. PubMed ID: 31647658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.