These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31563020)

  • 1. Simulating the Monty Hall problem in a DNA sequencing machine.
    Mamet N; Harari G; Zamir A; Bachelet I
    Comput Biol Chem; 2019 Dec; 83():107122. PubMed ID: 31563020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The psychology of the Monty Hall problem: discovering psychological mechanisms for solving a tenacious brain teaser.
    Krauss S; Wang XT
    J Exp Psychol Gen; 2003 Mar; 132(1):3-22. PubMed ID: 12656295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The collider principle in causal reasoning: why the Monty Hall dilemma is so hard.
    Burns BD; Wieth M
    J Exp Psychol Gen; 2004 Sep; 133(3):434-49. PubMed ID: 15355148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning inhibition in the Monty Hall problem: the role of dysfunctional counterfactual prescriptions.
    Petrocelli JV; Harris AK
    Pers Soc Psychol Bull; 2011 Oct; 37(10):1297-311. PubMed ID: 21606216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of a universal surface DNA computer.
    Su X; Smith LM
    Nucleic Acids Res; 2004; 32(10):3115-23. PubMed ID: 15181177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of Next-Generation Sequencing Reads.
    Reinert K; Langmead B; Weese D; Evers DJ
    Annu Rev Genomics Hum Genet; 2015; 16():133-51. PubMed ID: 25939052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLAST: CUDA implemented large-scale alignment search tool.
    Yano M; Mori H; Akiyama Y; Yamada T; Kurokawa K
    BMC Bioinformatics; 2014 Dec; 15(1):406. PubMed ID: 25495907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why Humans Fail in Solving the Monty Hall Dilemma: A Systematic Review.
    Saenen L; Heyvaert M; Van Dooren W; Schaeken W; Onghena P
    Psychol Belg; 2018 Jun; 58(1):128-158. PubMed ID: 30479812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopore Decoding of Oligonucleotides in DNA Computing.
    Kawano R
    Biotechnol J; 2018 Dec; 13(12):e1800091. PubMed ID: 30076732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parallel algorithm for solving the n-queens problem based on inspired computational model.
    Wang Z; Huang D; Tan J; Liu T; Zhao K; Li L
    Biosystems; 2015 May; 131():22-9. PubMed ID: 25817410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation sequencing: big data meets high performance computing.
    Schmidt B; Hildebrandt A
    Drug Discov Today; 2017 Apr; 22(4):712-717. PubMed ID: 28163155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging the power of high performance computing for next generation sequencing data analysis: tricks and twists from a high throughput exome workflow.
    Kawalia A; Motameny S; Wonczak S; Thiele H; Nieroda L; Jabbari K; Borowski S; Sinha V; Gunia W; Lang U; Achter V; Nürnberg P
    PLoS One; 2015; 10(5):e0126321. PubMed ID: 25942438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain activities associated with learning of the Monty Hall Dilemma task.
    Hirao T; Murphy TI; Masaki H
    Psychophysiology; 2017 Sep; 54(9):1359-1369. PubMed ID: 28480973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The general form of 0-1 programming problem based on DNA computing.
    ZhiXiang Y; Fengyue Z; Jin X
    Biosystems; 2003 Jun; 70(1):73-8. PubMed ID: 12753938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase programmed with a hairpin DNA incorporates a multiple-instruction architecture into molecular computing.
    Komiya K; Sakamoto K; Kameda A; Yamamoto M; Ohuchi A; Kiga D; Yokoyama S; Hagiya M
    Biosystems; 2006 Jan; 83(1):18-25. PubMed ID: 16343736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forensic tri-allelic SNP genotyping using nanopore sequencing.
    Cornelis S; Gansemans Y; Vander Plaetsen AS; Weymaere J; Willems S; Deforce D; Van Nieuwerburgh F
    Forensic Sci Int Genet; 2019 Jan; 38():204-210. PubMed ID: 30448528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of next-generation sequencing software in mapping and assembly.
    Bao S; Jiang R; Kwan W; Wang B; Ma X; Song YQ
    J Hum Genet; 2011 Jun; 56(6):406-14. PubMed ID: 21525877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNVerGUI: a desktop tool for variant analysis of next-generation sequencing data.
    Wang W; Hu W; Hou F; Hu P; Wei Z
    J Med Genet; 2012 Dec; 49(12):753-5. PubMed ID: 23024288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HLA genotyping by next-generation sequencing of complementary DNA.
    Segawa H; Kukita Y; Kato K
    BMC Genomics; 2017 Nov; 18(1):914. PubMed ID: 29179676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next generation sequencing (NGS): a golden tool in forensic toolkit.
    Aly SM; Sabri DM
    Arch Med Sadowej Kryminol; 2015; 65(4):260-71. PubMed ID: 27543959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.