These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31563101)

  • 41. Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes.
    Thiruvenkatachari R; Ouk Kwon T; Shik Moon I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1685-97. PubMed ID: 16835120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges.
    Massima Mouele ES; Fatoba OO; Babajide O; Badmus KO; Petrik LF
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9265-9282. PubMed ID: 29446027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools.
    Chen Z; Li M; Wen Q; Ren N
    Water Res; 2017 Nov; 124():566-575. PubMed ID: 28810228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of DMSO by ozone-based advanced oxidation processes.
    Wu JJ; Muruganandham M; Chen SH
    J Hazard Mater; 2007 Oct; 149(1):218-25. PubMed ID: 17467897
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [O3/H2O2 oxidation processes of cyclops of zooplankton inactivation in water].
    Cui FY; Wu YQ; Liu DM; Zhang M
    Huan Jing Ke Xue; 2005 Sep; 26(5):89-94. PubMed ID: 16366476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen.
    Brame J; Long M; Li Q; Alvarez P
    Water Res; 2014 Sep; 60():259-266. PubMed ID: 24867602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.
    Chen WR; Sharpless CM; Linden KG; Suffet IH
    Environ Sci Technol; 2006 Apr; 40(8):2734-9. PubMed ID: 16683616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process.
    Xia G; Wang Y; Wang B; Huang J; Deng S; Yu G
    Water Res; 2017 Jul; 118():26-38. PubMed ID: 28412550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The removal of COD and NH
    Jing L; Chen B; Wen D; Zheng J; Zhang B
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2691-2701. PubMed ID: 29134527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis.
    Zhang T; Cheng L; Ma L; Meng F; Arnold RG; Sáez AE
    Chemosphere; 2016 Oct; 161():349-357. PubMed ID: 27448315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rate constants for the reaction of hydroxyl and sulfate radicals with organophosphorus esters (OPEs) determined by competition method.
    Tang T; Lu G; Wang R; Qiu Z; Huang K; Lian W; Tao X; Dang Z; Yin H
    Ecotoxicol Environ Saf; 2019 Apr; 170():300-305. PubMed ID: 30530182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects.
    Wang Y; Yu G; Deng S; Huang J; Wang B
    Chemosphere; 2018 Oct; 208():640-654. PubMed ID: 29894965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of diethyl phthalate from water by ozone microbubbles in a pilot plant.
    Jabesa A; Ghosh P
    J Environ Manage; 2016 Sep; 180():476-84. PubMed ID: 27280856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment.
    Ma S; Kim K; Chun S; Moon SY; Hong Y
    Chemosphere; 2020 Mar; 243():125377. PubMed ID: 31760291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ozonation effects on emerging micropollutants and effluent organic matter in wastewater: characterization using changes of three-dimensional HP-SEC and EEM fluorescence data.
    Liu C; Li P; Tang X; Korshin GV
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20567-20579. PubMed ID: 27464659
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cu(II)-enhanced activation of molecular oxygen using Fe(II): Factors affecting the yield of oxidants.
    Chen Y; Feng Y; Chu H; Wu D; Zhang Y
    Chemosphere; 2019 Apr; 221():383-391. PubMed ID: 30648644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of pre-ozonation on the H2O2/UV-C treatment of raw and biologically pre-treated textile industry wastewater.
    Alaton IA; Balcioğlu IA
    Water Sci Technol; 2002; 45(12):297-304. PubMed ID: 12201115
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting reaction rate constants of ozone with ionic/non-ionic compounds in water.
    Zhang X; Li S; Yang Y; Zhao Y; Qu J; Li C
    Sci Total Environ; 2022 Aug; 835():155501. PubMed ID: 35483457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic study on degradation of micro-organics by different UV-based advanced oxidation processes in EfOM matrix.
    Yuan D; Liu G; Qi F; Wang J; Kou Y; Cui Y; Bai M; Li X
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45314-45327. PubMed ID: 35143007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures.
    Li C; Yang X; Li X; Chen J; Qiao X
    Chemosphere; 2014 Jan; 95():613-8. PubMed ID: 24210594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.