BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31563300)

  • 1. Characterization of membrane adsorbers used for impurity removal during the continuous purification of monoclonal antibodies.
    Trnovec H; Doles T; Hribar G; Furlan N; Podgornik A
    J Chromatogr A; 2020 Jan; 1609():460518. PubMed ID: 31563300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anion exchange membrane adsorbers for flow-through polishing steps: Part II. Virus, host cell protein, DNA clearance, and antibody recovery.
    Weaver J; Husson SM; Murphy L; Wickramasinghe SR
    Biotechnol Bioeng; 2013 Feb; 110(2):500-10. PubMed ID: 22951992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion exchange membrane adsorbers for flow-through polishing steps: Part I. Clearance of minute virus of mice.
    Weaver J; Husson SM; Murphy L; Wickramasinghe SR
    Biotechnol Bioeng; 2013 Feb; 110(2):491-9. PubMed ID: 22949170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overloading ion-exchange membranes as a purification step for monoclonal antibodies.
    Brown A; Bill J; Tully T; Radhamohan A; Dowd C
    Biotechnol Appl Biochem; 2010 Jun; 56(2):59-70. PubMed ID: 20497123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.
    Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD
    J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt tolerant membrane adsorbers for robust impurity clearance.
    Riordan WT; Heilmann SM; Brorson K; Seshadri K; Etzel MR
    Biotechnol Prog; 2009; 25(6):1695-702. PubMed ID: 19728393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane ion-exchange chromatography for process-scale antibody purification.
    Knudsen HL; Fahrner RL; Xu Y; Norling LA; Blank GS
    J Chromatogr A; 2001 Jan; 907(1-2):145-54. PubMed ID: 11217020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prevention of an anomalous chromatographic behavior and the resulting successful removal of viruses from monoclonal antibody with an asymmetric charge distribution by using a membrane adsorber in highly efficient, anion-exchange chromatography in flow-through mode.
    Masuda Y; Ogino Y; Yamaichi K; Takahashi Y; Nonaka K; Wakamatsu K
    Biotechnol Prog; 2020 May; 36(3):e2955. PubMed ID: 31894893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation exchange frontal chromatography for the removal of monoclonal antibody aggregates.
    Stone MT; Cotoni KA; Stoner JL
    J Chromatogr A; 2019 Aug; 1599():152-160. PubMed ID: 31084900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viral clearance by flow-through mode ion exchange columns and membrane adsorbers.
    Miesegaes GR; Lute SC; Read EK; Brorson KA
    Biotechnol Prog; 2014; 30(1):124-31. PubMed ID: 24167103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies.
    Khanal O; Kumar V; Lenhoff AM
    Biotechnol Bioeng; 2021 Jan; 118(1):164-174. PubMed ID: 32910459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a membrane adsorber for trace impurity removal in biotechnology manufacturing.
    Phillips M; Cormier J; Ferrence J; Dowd C; Kiss R; Lutz H; Carter J
    J Chromatogr A; 2005 Jun; 1078(1-2):74-82. PubMed ID: 16007984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing parvovirus filter throughput of monoclonal antibodies using ion exchange membrane adsorptive pre-filtration.
    Brown A; Bechtel C; Bill J; Liu H; Liu J; McDonald D; Pai S; Radhamohan A; Renslow R; Thayer B; Yohe S; Dowd C
    Biotechnol Bioeng; 2010 Jul; 106(4):627-37. PubMed ID: 20229510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH, conductivity, host cell protein, and DNA size distribution on DNA clearance in anion exchange chromatography media.
    Stone MC; Borman J; Ferreira G; Robbins PD
    Biotechnol Prog; 2018 Jan; 34(1):141-149. PubMed ID: 28884511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caprylic acid-induced impurity precipitation from protein A capture column elution pool to enable a two-chromatography-step process for monoclonal antibody purification.
    Zheng J; Wang L; Twarowska B; Laino S; Sparks C; Smith T; Russell R; Wang M
    Biotechnol Prog; 2015; 31(6):1515-25. PubMed ID: 26280674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane adsorbers as purification tools for monoclonal antibody purification.
    Boi C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 848(1):19-27. PubMed ID: 16996324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.
    Xu Z; Li J; Zhou JX
    Prep Biochem Biotechnol; 2012; 42(2):183-202. PubMed ID: 22394066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonwoven Ion-Exchange Membranes with High Protein Binding Capacity for Bioseparations.
    Lemma SM; Boi C; Carbonell RG
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33800791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of fiber-based cation exchange adsorbents for the removal of monoclonal antibody aggregates.
    Winderl J; Neumann E; Hubbuch J
    J Chromatogr A; 2021 Sep; 1654():462451. PubMed ID: 34399144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of high-capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes.
    Tao Y; Ibraheem A; Conley L; Cecchini D; Ghose S
    Biotechnol Bioeng; 2014 Jul; 111(7):1354-64. PubMed ID: 24420791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.